10-1-2015

Claiming a Cell Reset Button: Induced Pluripotent Stem Cells and Preparation Methods as Patentable Subject Matter

Sarah Smith

Boston College Law School, sarah.smith.10@bc.edu

Follow this and additional works at: http://lawdigitalcommons.bc.edu/bclr

Part of the Criminal Law Commons, Health Law and Policy Commons, Intellectual Property Law Commons, and the Science and Technology Law Commons

Recommended Citation

This Notes is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Law Review by an authorized administrator of Digital Commons @ Boston College Law School. For more information, please contact nick.szydrowski@bc.edu.
CLAIMING A CELL RESET BUTTON:
INDUCED PLURIPOTENT STEM CELLS
AND PREPARATION METHODS AS
PATENTABLE SUBJECT MATTER

Abstract: In 2006, a team of scientists discovered a method to create pluripotent stem cells—cells that have the potential to become almost any other type of cell in the human body—by inserting specific genes into a skin cell. The resulting cells were called induced pluripotent stem cells (“iPS cells”). The ability to manufacture stem cells could eventually eliminate the need to harvest stem cells from embryos, thereby rendering the embryonic stem cell debate irrelevant. Should a patent claim directed toward an iPS cell-related technology be challenged in the future, the absence of a bright-line test for patentable subject matter could present challenges to the presiding court. This Note proposes two new standards by which courts should evaluate whether products of nature and processes in the life sciences are patentable subject matter and, applying those standards, concludes that sufficiently narrow claims directed to iPS cells and preparation methods would likely be upheld as patentable subject matter.

INTRODUCTION

The medical use of pluripotent stem cells was, for a time, one of the most contested bioethical issues in the United States.1 Pluripotent stem cells are naturally occurring cells that have the potential to differentiate into almost any type of cell in the body.2 Because of their unique differentiation capabilities, pluripotent stem cells have many different applications in medicine, including the treatment of various diseases through cell regeneration.3

3 See id.
Under the right conditions, pluripotent stem cells can develop into specialized cells that can ultimately replace diseased cells and tissues.\(^4\)

Prior to 2006, the only pluripotent stem cells in existence that could differentiate into nearly every type of bodily cell and that could be successfully maintained in a laboratory were embryonic stem cells ("ESCs").\(^5\) Such stem cells, however, could not be harvested without destroying a human embryo.\(^6\) Opponents of stem cell research argue that unborn embryos should be protected and should not be sacrificed for medical purposes.\(^7\) Alternatively, proponents of stem cell research argue that the stem cell therapy should be explored and developed because stem cells have the potential to significantly improve the quality of life of many people with debilitating diseases.\(^8\) Because the harvesting and use of embryonic stem cells for medical research raises ethical questions, embryonic stem cell research has been the subject of intense political debate for nearly two decades.\(^9\)

Since 2006, however, the debate surrounding embryonic stem cell research has been on a steady decline.\(^10\) This decline has not been fueled by

\(^5\) See Murnaghan, supra note 2. Although stem cells can also be harvested from the blood or organs of adults, ESCs have several advantages that make them better suited to scientific research. See id. ESCs can differentiate into almost any type of cell in the body, whereas adult stem cells can only differentiate into a limited number of cell types. See id. Moreover, ESCs are easily grown in a laboratory and are capable of almost unlimited division when placed in cell culture, whereas adult stem cells are not grown easily after isolation and do not multiply as readily. See id. Because stem cell research requires the generation of large numbers of cells, having cell lines that can grow and divide readily is critical for successful experimentation. See id. For this reason, ESCs are generally a better research tool than adult stem cells. See id.

\(^7\) See An Overview of Stem Cell Research, supra note 6 (providing an overview of the ethical debate surrounding the use of embryonic stem cells for research purposes).

\(^8\) See id.

\(^9\) See John A. Robertson, Embryo Stem Cell Research: Ten Years of Controversy, 38 J.L., MED. & ETHICS 191, 191 (2010); An Overview of Stem Cell Research, supra note 6 (providing an overview of the ethical debate surrounding the use of embryonic stem cells for research purposes).

shifting ethical beliefs but has instead resulted from one of the most significant discoveries of the past century in the biological field.11 In 2006, Dr. Shinya Yamanaka of the University of Kyoto was credited with discovering induced pluripotent stem cells ("iPS cells").12 Dr. Yamanaka inserted four genes into a skin cell, which essentially "reprogrammed" the skin cell to become a cell resembling a pluripotent stem cell.13 Because of Dr. Yamanaka’s discovery, there is a wide new range of scientific research on pluripotent stem cells that can now be carried out.14 Moreover, such research can be performed without confronting the major bioethical dilemma of destroying human embryos.15 Since Dr. Yamanaka’s discovery, the United States Patent and Trademark Office ("USPTO") has granted patents on iPS

11 See Kazutoshi Takahashi et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, 131 CELL 861, 861 (2007) [hereinafter Takahashi et al. 2007] (explaining how, using factors Oct3/4, Sox2, Klf4, and c-Myc, adult human fibroblasts were reprogrammed to become iPS cells, which resembled naturally occurring stem cells in morphology, gene expression, and proliferation, among other characteristics); Kazutoshi Takahashi et al., Induction of Pluripotent Stem Cells from Mouse Fibroblasts and Adult Fibroblast Cultures by Defined Factors, 126 CELL 663, 663 (2006) [hereinafter Takahashi et al. 2006] (explaining that differentiated cells, such as fibroblasts, can be reprogrammed into an embryonic-like state); Paul Knoepfler, Induced Pluripotent Stem Cells Are Similar to Cancer Cells, but Nobel Prize Still Well-Deserved, HUFFINGTON POST (Oct. 12, 2012), http://www.huffingtonpost.com/paul-knoepfler/induced-pluripotent-stem-cells-cancer-cells_b_1926016.html [http://perma.cc/S5PW-H5RT] (discussing the impact of Dr. Yamanaka’s work on the field of stem cell research); Dan Vergano, Al Gore on Board for $20M Stem Cell Venture, USA TODAY (Apr. 14, 2009), http://usatoday30.usatoday.com/tech/science/ethics/2009-04-14-gore-stem-cells_N.htm [http://perma.cc/XP8H-FGCH] (discussing the attraction of researchers and investors to emerging iPS cell technologies).

12 See Takahashi et al. 2006, supra note 11, at 663; Gina Kolata, Scientists Bypass Need for Embryo to Get Stem Cells, N.Y. TIMES (Nov. 21, 2007), http://www.nytimes.com/2007/11/21/science/21stem.html?_r=1& [http://perma.cc/4MGH-DBHV] (describing iPS cells and how they were expected to impact the medical field); Alice Park, A Breakthrough on Stem Cells, TIME (Dec. 11, 2007), http://content.time.com/time/health/article/0,8599,1685965,00.html [http://perma.cc/7XBX-VUCK] (reporting the discovery of iPS cells).

13 See Takahashi et al. 2007, supra note 11, at 862 (observing that, two weeks following introduction of Oct3/4, Sox2, Klf4, and c-Myc into fibroblast cells, some clusters of cells appeared that did not resemble the original fibroblast cells, suggesting that the cells had been reprogrammed to a stem cell-like state); see also Takahashi et al. 2006, supra note 11, at 666 (observing that the same four factors used in mouse fibroblasts produced similar colonies, or clusters of cells, that did not resemble the original fibroblasts).

14 See Takahashi et al. 2007, supra note 11, at 862 (explaining that the reprogrammed fibroblasts resembled naturally occurring stem cells “in morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity”); Kolata, supra note 12 (explaining that iPS cells are advantageous to researchers because they will genetically match the donor); Lori J. Schroth, Researchers Create Embryonic Stem Cell Without Embryo, HARV. GAZETTE (Jan. 29, 2014), http://news.harvard.edu/gazette/story/2014/01/researchers-create-embryonic-stem-cells-without-embryo/ [http://perma.cc/8QYV-Z3D2] (discussing the possibility that researchers may one day be able to create stem cells from a person’s blood sample, which could allow scientists to create tissue specific to that individual).

15 See Takahashi et al. 2007, supra note 11, at 862; Kolata, supra note 12; Schroth, supra note 14.
cell lines, iPS cell preparation methods, and nuclear reprogramming factors.

The U.S. Supreme Court has decided several patent cases in the past few decades relating to the patentability of life sciences inventions and methods. The Court has not, however, articulated a clear-cut standard as to what, in the context of life sciences products and methods, meets the patentable subject matter requirement. Courts have routinely found that products of nature are not patentable subject matter under 35 U.S.C. § 101. Despite this, in 1980 in Diamond v. Chakrabarty, the U.S. Supreme Court held that a bacterium with an inserted foreign gene is patentable subject matter. An iPS cell is similar to the bacterium in Chakrabarty in the sense that both contain foreign genes. Unlike the bacterium, however, an iPS cell is meant to resemble an unpatentable natural product. Should a patent claim directed toward an iPS cell-related technology be challenged in the future on patentable subject matter grounds, such a challenge would present a unique dilemma to the presiding court.

This Note proposes new standards that courts should employ when considering challenges to iPS cell line patents and iPS cell preparation method patents based on the § 101 patentable subject matter requirement. Part I provides an overview of the patentable subject matter requirement

16 See infra note 74 and accompanying text (explaining patents granted on iPS cell technologies).
17 See infra notes 95–122 and accompanying text (explaining case law addressing patentable subject matter in the context of the life sciences).
18 See infra notes 95–122 and accompanying text (explaining current status of standard for determining patentable subject matter in the context of the life science).
20 See Chakrabarty, 477 U.S. at 310 (stating that the patentee’s bacterium possessed “markedly different characteristics from any found in nature and one having the potential for significant utility” and that the bacterium was “not nature’s handiwork”).
21 See id. (explaining that the foreign genes the patentee inserted into the bacterium at issue enabled the bacterium to degrade hydrocarbons); Takahashi et al. 2007, supra note 11, at 862 (outlining the process by which the four reprogramming factors were introduced into fibroblast cells).
22 See Takahashi et al. 2007, supra note 11, at 861 (explaining that Oct3/4, Sox2, Klf4, and c-Myc were chosen over other reprogramming factors because fibroblasts reprogrammed with these four factors showed, over time, a high degree of similarity to naturally occurring stem cells).
23 See Chakrabarty, 477 U.S. at 310 (finding a bacterium that contained foreign genes and that did not resemble any other bacterium found in nature was patentable subject matter); Takahashi et al. 2007, supra note 11, at 861–62 (explaining the discovery of iPS cells and how these cells contain foreign genes but do resemble other cells found in nature).
24 See infra notes 149–207 and accompanying text.
and the invention of iPS cells. Part II discusses the patentable subject matter requirement in the context of the life sciences. Part III discusses the problem of patent thickets in the life sciences and how courts have handled the issue. Part IV proposes two standards that can be used to evaluate whether patents on inventions that are derivatives of natural products and patents on biological methods are patentable subject matter. Part V applies the two proposed standards to iPS cell technologies. Finally, Part VI addresses the implications that a ruling upholding or invalidating claims to iPS cell technologies would have on the fields of biological research, medicine, and patent law.

I. INDUCED PLURIPOTENT STEM CELL TECHNOLOGY AND THE PATENTABLE SUBJECT MATTER REQUIREMENT: A BACKGROUND

Section A provides an overview of the patentable subject matter requirement. Section B discusses how the patentable subject matter requirement is applied to methods and processes. Section C discusses the development of induced pluripotent stem cells (“iPS cells”) and why the patentability of iPS cell lines and preparation methods remains unclear.

A. An Overview of the Patentable Subject Matter Requirement

Title 35 of the U.S. Code establishes the requirements for patentability. In order for a technology to be patentable, the technology must be (1) useful, (2) novel, (3) nonobvious, and (4) patentable subject matter.\(^\text{35}\)

\(^{25}\) See infra notes 34–79 and accompanying text.

\(^{26}\) See infra notes 80–122 and accompanying text.

\(^{27}\) See infra notes 123–148 and accompanying text.

\(^{28}\) See infra notes 149–207 and accompanying text.

\(^{29}\) See infra notes 208–233 and accompanying text.

\(^{30}\) See infra notes 234–242 and accompanying text.

\(^{31}\) See infra notes 34–47 and accompanying text.

\(^{32}\) See infra notes 48–53 and accompanying text.

\(^{33}\) See infra notes 54–79 and accompanying text.

\(^{34}\) See 35 U.S.C. § 101 (setting forth patentability requirements).

\(^{35}\) Id. The utility requirement for obtaining a patent is stated in 35 U.S.C. § 101. See id. An invention is “useful” if it provides some identifiable benefit and is capable of use. See Brenner v. Manson, 383 U.S. 519, 528–29 (1966) (holding that a novel process for synthesizing a steroid was not useful because the steroid served no known function); Utility Examination Guidelines, 66 Fed. Reg. 1092, 1092 (Jan. 5, 2001) (providing that a patent application must express a specific, credible, and substantial utility in order for the inventor to be awarded a patent). Because iPS cells show significant promise as a research tool and possible source of medical treatments, plaintiffs would not be likely to challenge iPS cell patents on utility grounds. See Takahashi et al. 2007, supra note 11, at 861; Monya Baker, Adult Cells Reprogrammed to Pluripotency, Without Tumors, NATURE REPORTS: STEM CELLS (Dec. 6, 2007), http://www.nature.com/stemcells/2007/0712/071206/full/stemcells.2007.124.html [http://perma.cc/P5MJ-AMTZ]. The novelty requirement provides that an invention is not patentable if it was known to the public prior to the patent’s
The patentable subject matter requirement dictates that only inventions that fall into one of four categories—processes, machines, manufactures, and compositions of matter—are eligible to be patented.\(^{36}\) The purpose of the patentable subject matter requirement is to prevent a patent monopoly on certain tools that are necessary for inventors to create new and useful inventions.\(^{37}\) The limits of these four categories are not perfectly clear, as Congress has left the courts with the task of defining what should be included under this statute.\(^{38}\)

Courts have historically construed the boundaries of patentable subject matter rather broadly.\(^{39}\) Courts have created three categories of judicial exclusions to patentable subject matter: laws of nature, physical phenomena, and abstract ideas.\(^{40}\) A claim directed toward an invention that falls within one of these three judicial exclusions is not patentable under § 101.\(^{41}\) In creating these judicial exclusions, courts sought to keep this subject matter in

\(^{36}\) 35 U.S.C. § 101; Alice Corp. Pty. v. CLS Bank Int’l, 134 S. Ct. 2347, 2350 (2014) (explaining that the “building block[s] of human ingenuity” are not patentable, whereas inventions “that integrate the building blocks into something more” may be patentable) (citing Mayo Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289, 1303 (2012) (finding invalid a patent claiming the correlation between concentrations of metabolites in the blood and the effectiveness of a drug)).

\(^{37}\) Alice, 134 S. Ct. at 2350; see Brenner, 383 U.S. at 535 (explaining that the USPTO may not grant patent applications that are so broad they “engross” a field); Dmitry Karshtedt, The Completeness Requirement in Patent Law, 56 B.C. L. Rev. 949, 953 (2015) (describing how the doctrines of utility, written description, and patentable subject matter are used to deem potentially problematic classes of inventions unpatentable).

\(^{39}\) Alice, 134 S. Ct. at 2350; see Brenner, 383 U.S. at 535 (explaining that the USPTO may not grant patent applications that are so broad they “engross” a field); Dmitry Karshtedt, The Completeness Requirement in Patent Law, 56 B.C. L. Rev. 949, 953 (2015) (describing how the doctrines of utility, written description, and patentable subject matter are used to deem potentially problematic classes of inventions unpatentable).

\(^{40}\) See Chakrabarty, 447 U.S. at 309 (articulating three judicial exclusions to patentable subject matter); Parker v. Flook, 437 U.S. 584, 598 (1978) (offering a method of calculating alarm limit values to be not patentable subject matter); Gottschalk v. Benson, 409 U.S. 63, 67 (1972) (establishing a mathematical formula used in connection with a computer to be an unpatentable process); Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127, 130 (1948) (determining claims directed to inoculants containing several species of nitrogen-fixing bacteria to be invalid).

\(^{41}\) See Chakrabarty, 447 U.S. at 309 (stating that laws of nature, natural phenomena, and abstract ideas cannot be patented); Parker, 437 U.S. at 598; Gottschalk, 409 U.S. at 67; Funk Bros. Seed Co., 333 U.S. at 130.
the public domain and free from monopoly. Courts have not, however, articulated a bright-line standard beyond these three judicial exclusions.

The patentable subject matter requirement has been enmeshed in uncertainty in recent years. In the field of biotechnology, inventions are often composed of or resemble products of nature. In these cases, it is often unclear whether the invention falls within a judicial exception. Because courts have not clearly defined the judicial exceptions to patentable subject matter, it is often difficult to determine whether a product or method patent in the biotechnology sphere is in fact patent-eligible subject matter.

B. The Patentable Subject Matter Requirement as Applied to Processes and Methods

Just as a patent can be obtained on an invention that is a physical product, inventors can also obtain patents on methods or processes, including the method or process by which a physical product is created or transformed. Although courts have not developed a clear-cut test to assess whether meth-

42 See generally David E. Adelman, A Fallacy of the Commons in Biotech Patent Policy, 20 BERKELEY TECH. L.J. 1021 (2005) (arguing that limiting access to tools that are widely used to carry out various scientific research methods through granting patents on those tools will hinder innovation and technological process).

43 See Chakrabarty, 447 U.S. at 309 (articulating the three judicial exclusions to patentable subject matter); Parker, 437 U.S. at 598 (“The line between a patentable ‘process’ and an unpatentable ‘principle’ is not always clear. Both are ‘conception[s] of the mind, seen only by [their] effects when being executed or performed.’” (quoting Le Roy v. Tatham, 55 U.S. 156, 175 (1852))); Gottschalk, 409 U.S. at 67 (explaining that although a law of nature cannot be patented, an invention may be patentable if it applies a law of nature “to a new and useful end” (quoting Funk Bros. Seed Co., 333 U.S. at 130)).

44 See 35 U.S.C. § 101; e.g., Association for Molecular Pathology v. Myriad Genetics, Inc., 133 S. Ct. 2107, 2119 (2013) (finding cDNA to be patentable subject matter despite containing naturally occurring nucleotide sequences); Chakrabarty, 447 U.S. at 310 (finding a bacterium with exogenous genes encoding hydrogen degradation pathway components to be patentable subject matter); see also Parke-Davis & Co. v. H.K. Mulford 196 F. 496, 500 (2d Cir. 1912) (finding isolated adrenaline to be patentable subject matter).

46 35 U.S.C. § 101; see Myriad, 133 S. Ct. at 2119 (finding cDNA to be patentable subject matter in spite of the fact that cDNA is composed of nucleotides, which are naturally occurring phenomena excluded from patentable subject matter); Funk Bros. Seed Co., 333 U.S. at 130 (articulating three judicial patentable subject matter exclusions).

47 35 U.S.C. § 101; see Myriad, 133 S. Ct. at 2119 (finding cDNA, a sequence of naturally occurring nucleotides, not to be a natural phenomenon); Funk Bros. Seed Co., 333 U.S. at 130 (outlining the three judicial exclusions without further elaborating on how to apply these exclusions).

48 35 U.S.C. § 101. One of the four categories of patentable subject matter under § 101 is processes. Id.
ods patents are patentable subject matter, several previous decisions provide guidance on this issue.\(^49\) In 2008, in *In re Bilski*, the United States Court of Appeals for the Federal Circuit articulated a standard to determine whether a method is patentable subject matter, known as the machine-or-transformation test.\(^50\) According to this standard, an invention is patentable subject matter if the invention is (1) tied to a particular machine or apparatus, or (2) it transforms a particular article into a different state or thing.\(^51\)

In 2010, in *Bilski v. Kappos*, the U.S. Supreme Court diluted the Federal Circuit machine-or-transformation test, changing it from a test to an investigative tool.\(^52\) The outcome of the machine or transformation test, according to the Court, correlates with, but does not indicate, the presence of patentable subject matter.\(^53\)

C. The Invention of iPS Cells

Pluripotent stem cells are cells that can differentiate into nearly any type of bodily, or somatic, cell.\(^54\) These cells arise in the human embryo at a very early stage of development, only a few days following the fertilization of an egg cell.\(^55\) Scientific researches have used the innate differentiating

\(^{50}\) In *re Bilski*, 545 F.3d at 954 (holding claim directed to hedging risk to be invalid); see Matthew Moore, *In re Bilski and the “Machine-or-Transformation” Test: Receding Boundaries for Patent-Eligible Subject Matter*, DUKE L. & TECH. REV. 005, at ¶¶ 8–12 (2010) (summarizing the Federal Circuit’s explanation of the machine-or-transformation test and explaining the types of transformations that would be considered sufficient to satisfy the patentable subject matter requirement).

\(^{51}\) In *re Bilski*, 545 F.3d at 954. In 2009, the Federal Circuit decided *Prometheus Laboratories, Inc. v. Mayo Collaborative Services* and utilized the machine-or-transformation test set out in *Bilski*. See *Prometheus Laboratories*, 581 F.3d at 1349; *In re Bilski*, 545 F.3d at 954. In *Prometheus Laboratories*, the defendant held a patent on a method for administering a drug. See 628 F.3d 1347, 1349–50 (on remand from 561 U.S. 1040). The method involved measuring the level of metabolites of the drug in the bloodstream and increasing or decreasing the administered dose of the drug accordingly. See *id*. The Federal Circuit loosely applied the machine-or-transformation test set forth in *In re Bilski* and upheld the patent, stating that because the method involved a physical transformation, it therefore constituted patentable subject matter. See *id*. at 1355.

\(^{52}\) See *Bilski*, 561 U.S. at 604; Mark A. Lemley et al, *Life After Bilski*, 63 STAN. L. REV. 1315, 1315 (2011) (describing the machine-or-transformation test as a “presumptive starting point that threatens to effectively become mandatory”). The U.S. Supreme Court, however, upheld the invalidity of the patents at issue. See *Bilski*, 561 U.S. at 604.

\(^{53}\) See *Bilski*, 561 U.S. at 604; Takahashi et al. 2007, supra note 11, at 861.

\(^{54}\) See Murnaghan, supra note 2.

\(^{55}\) See *id*. In order to understand the origin of embryonic stem cells, it is essential to consider the first steps of embryonic development. See *id*. After an egg is fertilized by a sperm, a single cell re-
ability of pluripotent stem cells to develop treatments for certain degenerative diseases. When exposed to the right conditions, pluripotent stem cells can develop into healthy specialized cells that replace diseased cells and tissues. In addition, as an alternative to testing drugs on animals, human pluripotent stem cells can be used in initial drug testing. Drugs that are well tolerated by the cells can then progress to testing in animals and humans.

Prior to the invention of iPS cells, embryonic stem cells (“ESCs”) were arguably better suited for laboratory work than adult stem cells due to their ability to survive for longer durations in a laboratory and to differentiate into more different types of cells. Despite the many applications and enormous potential benefits of stem cells in scientific research and medicine, embryonic stem cells have been at the center of political and ethical debate for over two decades. The ESCs used for laboratory research are harvested from embryos originally created for reproductive purposes through in vitro fertilization. In order to harvest stem cells, scientists must extract cells from the blastocyst, thereby destroying the embryo. Because

See id. This cell is totipotent, meaning it has the potential to differentiate into any type of cell. See Stem Cell Classification, BROWN UNIV., http://biomed.brown.edu/Courses/B1108/B1108_2002_Groups/pancstems/stemcell/stemcellsclassversatility.htm [http://perma.cc/NZ26-TJYQ]. The original cell then divides several times into totipotent cells that are exact copies of the original. See id. Three to five days after fertilization, the totipotent cells begin to form a blastocyst, a cluster of cells that will eventually form most organs and tissues. See Murnaghan, supra note 2. It is these blastocyst cells that are pluripotent. See id.

See Murnaghan, supra note 2; Stem Cell Classification, supra note 55.

Potential beneficiaries of stem cell regenerative treatment include individuals with severe burns, heart disease, spinal cord injuries, diabetes, Alzheimer’s, or Parkinson’s disease. See id.; Potential Uses, supra note 4.

See Murnaghan, supra note 2.

What Are Embryonic Stem Cells?, NAT’L INSTS. OF HEALTH (Mar. 4, 2015), http://stemcells.nih.gov/info/basics/pages/basics3.aspx [http://perma.cc/9SZV-ZUQ4]. When a couple that has pursued in vitro fertilization decides that they have completed their family and the remaining embryos are no longer needed for their original purpose, the donor has the option to donate the embryos for research. Myths and Misconceptions About Stem Cell Research, CAL. INST. FOR REGENERATIVE MED., http://www.cirm.ca.gov/our-progress/myths-and-misconceptions-about-stem-cell-research [http://perma.cc/WTB6-MM4Z] [hereinafter Myths and Misconceptions]. Individuals who have elected to pursue in vitro fertilization have several options regarding what to do with the remaining embryos once they have elected not to have more children. Id. One such option is to elect to store the embryos indefinitely at the couple’s own expense. Id. The cost of storing embryos, however, is very high. Id. The embryos can also be given to another infertile couple. Id. The two remaining options are to discard the excess embryos or to donate them for cell research. Id. Both of these options entail destroying the embryo. See id.
the destruction of any embryo raises ethical questions, the use of ESCs in order to better understand and treat certain diseases has been the subject of intense debate. Consequentially, the level of federal funding devoted to stem cell research since 1998 has been sporadic, which has slowed progress in developing stem cell-based treatments.

Recently, scientists at the University of Kyoto developed a new technology called induced pluripotent stem cells (“iPS cells”), which could eventually render the embryonic stem cell debate irrelevant by eliminating the need to harvest stem cells from embryos. In 2007, Dr. Shinya Yamanaka of the University of Kyoto developed a method to genetically reprogram human adult somatic cells to return them to a stem cell-like state. Essentially, Dr. Yamanaka found a way to create stem cells, which he called iPS cells, from skin cells. He did this by identifying four genes called

64 See Robertson, supra note 9, at 191; An Overview of Stem Cell Research, supra note 6 (“We must not sacrifice one class of human beings (the embryonic) to benefit another (those suffering from serious illness).”); Myths and Misconceptions, supra note 62; Obama Overturns Bush Policy on Stem Cells, CNN (Mar. 9, 2009), http://www.cnn.com/2009/POLITICS/03/09/obama.stem.cells/index.html [http://perma.cc/UX9R-JJPN] (discussing President Obama’s stance on embryonic stem cell research, including his statement that “we have been given the capacity and will to pursue this research—and the humanity and conscience to do so responsibly”).

65 See Robertson, supra note 9, at 191.

66 See Takahashi et al. 2007, supra note 11, at 861.

67 See id. In 2006, prior to developing human iPS cells, Dr. Yamanaka published a method for reprogramming skin cells, or fibroblasts, from mice to return them to a stem cell-like state. See Takahashi et al. 2006, supra note 11, at 663. To do so, Dr. Yamanaka identified 24 genes in mice known to be important for cellular development. See id. He then forced fibroblasts to express different combinations of these 24 genes. See id. at 664–65. This was done by engineering retroviruses to insert various combinations of these 24 genes into the mouse genome. See id. He found that when 4 genes called Oct3/4, Sox2, Klf4, and c-Myc were introduced in combination, the fibroblast was reprogrammed to resemble an embryonic cell. See id. at 666. The forced expression of those 4 genes essentially caused a skin cell to become a cell resembling a stem cell. See id. See Takahashi et al. 2007, supra note 11, at 861. Before examining how iPS cells were developed, it is important to understand how stem cells differ genetically from other types of bodily cells. See id.; Gene Expression, NATURE EDUC., http://www.nature.com/scitable/topicpage/gene-expression-14121669 [http://perma.cc/UY32-56YB]. Each cell in the human body generally has the same genetic content. See Barry Starr, DNA Basics, STANFORD AT THE TECH: UNDERSTANDING GENETICS, http://genetics.thetech.org/ask/ask4 [http://perma.cc/694U-8UER]. Skin cells, heart muscle cells, and liver cells, for example, have the same DNA. See id. What makes these cells different is that different genes are “turned on,” or expressed, in each cell type. See id. When a gene is expressed, a certain protein is in turn produced, which allows the cell to perform its function. See id. Genes encoding the protein hemoglobin, for example, need to be expressed in red blood cells, as hemoglobin is involved in carrying oxygen to cells. See id. In contrast, these same genes encoding hemoglobin are “turned off,” or silenced, in cells in the eye because oxygen transport is not a function of eye cells. See id. The combination of genes that are turned on and off is referred to as a cell’s gene expression pattern. See John P.T. Higgins, et al., Gene Expression Patterns in Renal Cell Carcinoma Assessed by Complementary DNA Microarray, 162 AM. J. PATHOLOGY 925, 925 (2003). Just as muscle cells and liver cells possess certain characteristics based on their gene expression pattern, the ability of a pluripotent stem cell to differentiate into a somatic cell is also attributed to its gene expression pattern. See Starr, supra. That is, the genes
Induced Pluripotent Stem Cells and New Patentability Standards

Oct3/4, Sox2, Klf4, and c-Myc that are important for maintaining the properties of a stem cell. These genes were subsequently inserted into a skin cell, or fibroblast, using a genetically engineered virus. The resulting iPS cells demonstrated an ability to differentiate into many types of somatic cells. Because of their stem cell-like character, iPS cells could effectively end the embryonic stem cell debate, as scientists would no longer need to harvest embryonic cells in order to develop stem cell therapies.
In the past eight years since Dr. Yamanaka’s discovery, the United States Patent and Trademark Office (“USPTO”) has issued over 100 patents related to iPS cell technologies.73 The subject matter claimed in these patents is directed toward several categories of technology related to iPS cells, including methods to develop human iPS cells from somatic cells, products comprising iPS cells, including iPS cells produced by various claimed methods, and nuclear reprogramming factors.74 The term “nuclear reprogramming factor” in the context of existing patents refers to a virus containing a certain combination of genes that are inserted into the cell and thereafter expressed, which ultimately results in somatic cell reprogramming.75

As more scientists begin to use iPS cells as a research tool and develop medical treatments based on this patented technology, it is very possible that the validity of many of these patents will eventually be challenged.76 The current statutes and case law governing the patentability requirements make unclear whether iPS cell technologies would be patentable.77 Although it can be argued that iPS cells are a natural phenomenon because they resemble naturally occurring pluripotent stem cells, they oncogenes, meaning that their insertion into the cellular genome can cause cancer. See Baker, \textit{supra} note 35; C.E. Pasi et al., \textit{Genomic Instability in Induced Stem Cells}, 18(5) \textit{CELL DEATH AND DIFFERENTIATION} 745, 745 (2011).73

75 '999 Patent.

77 See \textit{infra} notes 80–122 and accompanying text.
are also a synthetic creation made in a laboratory. Because iPS cell lines do not fit neatly within a judicial exclusion to patentable subject matter, a challenge to an iPS cell patent would present a particularly unique challenge to courts.

II. APPLICATION OF THE PATENTABLE SUBJECT MATTER REQUIREMENT IN LIFE SCIENCES

Although no bright-line standard has been developed to assess whether an invention in the life sciences field is patentable subject matter, the Federal Circuit and the U.S. Supreme Court have issued a few crucial decisions that provide guidance as to when an invention that is derived from a naturally occurring product is considered patentable subject matter. Section A will discuss the early applications of patentable subject matter in life sciences. Section B will discuss how the U.S. Supreme Court applied the patentable subject matter requirement to DNA claims in Association for Molecular Pathology v. Myriad Genetics, Inc. Section C will discuss the Interim Guidance on Patent Subject Matter Eligibility issued by the United States Patent and Trademark Office (“USPTO”) in December, 2014.

A. Applications of Patentable Subject Matter in Life Sciences Pre-Myriad

In 1911 in Parke-Davis & Co. v. H.K. Mulford Co., the United States District Court for the Southern District of New York decided one of the first major cases relating to biotechnology as patentable subject matter. Judge Learned Hand upheld the validity of a patent on a purified and isolated form of adrenaline based upon certain structural differences between the purified and naturally occurring forms of adrenaline. The notion that a structural distinction between an original product and a purified product is sufficient

78 See Takahashi et al. 2007, supra note 11, at 862 (explaining that iPS cells are composed of a human fibroblast and four reprogramming factors).
79 See 35 U.S.C. § 101; Funk Bros. Seed Co., 333 U.S. at 130 (articulating the three judicial exclusions to patentable subject matter); Takahashi et al. 2007, supra note 11, at 862 (explaining the method by which iPS cells were created by Dr. Yamanaka’s laboratory).
80 See infra notes 84–122 and accompanying text.
81 See infra notes 84–94 and accompanying text.
82 See infra notes 95–103 and accompanying text.
83 See infra notes 104–122 and accompanying text.
85 Id. The court concluded that the patented purified extract was not, in fact, different from the prior art “only for a degree of purity,” but rather was a different chemical substance from that found in the prior art. Id. at 114–15 (discussing how no one had ever isolated a substance produced by the adrenal glands that was not in salt form and that the claimed base form of adrenaline was an original production of the patentee).
to uphold a patent was reinforced in 1938 by the United States Court of Customs and Patent Appeals, in In re Merz, wherein the Court of Customs and Patent Appeals ruled that if the purified product differs from the original not only in degree but in kind, it may be patentable.86

Nearly seventy years later in 1980, in Diamond v. Chakrabarty, the U.S. Supreme Court held that a bacterium with an inserted plasmid containing genes that are not naturally occurring in the plasmid is patentable subject matter.87 Prior to Chakrabarty, it was generally understood that living things were not patentable subject matter.88 Here, the Court emphasized that because the bacterium contained inserted genetic material that was not native to the bacterium, it was a non-natural manufacture or composition of matter and a product of human ingenuity.89

In Chakrabarty, the patent examiner initially rejected the petitioner’s claims to the bacterium, stating that the bacterium did not constitute patentable subject matter on two grounds: 1) that bacteria are products of nature, and 2) that bacteria are living things.90 The U.S. Supreme Court rejected both of these grounds and found the bacterium to be patentable subject matter, reasoning that the petitioner’s new bacterium had markedly different characteristics from any organism found in nature, and the invented bacterium, according to the Court, had the potential for significant practical utility.91

The broad language that the Court used in Chakrabarty has made its logic difficult to apply to other life sciences inventions.92 The Court stated

86 In re Merz, 97 F.2d 599, 601 (C.C.P.A. 1938) (finding a purified substance with a greater degree of purity than any product previously produced to be patentable subject matter).
87 Diamond v. Chakrabarty, 447 U.S. 303, 309–10 (1980); Anna Lumelsky, Diamond v. Chakrabarty: Gauging Congress’s Response to Dynamic Statutory Interpretation by the Supreme Court, 39 U.S.F. L. REV. 641, 643–48 (2005) (discussing the Supreme Court’s interpretation of 35 U.S.C. § 101 in Chakrabarty). Plasmids are units of genetic material physically separate from the bacterium’s chromosomes. Chakrabarty, 477 U.S. at 310 n.1. The patentee discovered a process by which four plasmids could be transferred to a Pseudomonas bacterium. Id. The resulting bacterium possessed the ability to degrade oil. Id.
88 Chakrabarty, 447 U.S. at 309–10; Smith, supra note 38, at 117.
89 Chakrabarty, 447 U.S. at 309–10. In his dissent, Justice Brennan stated that § 101 does not include living organisms. Id. at 320 (Brennan, J., dissenting); see also 35 U.S.C. § 101 (2012). He reasoned that because Congress created separate statutes to render agricultural inventions patentable, the lack of legislation governing the patentability of bacteria is indicative of Congress’s intent to exclude bacteria from patentable subject matter. Chakrabarty, 447 U.S. at 320 (Brennan, J., dissenting).
90 See Chakrabarty, 447 U.S. at 306.
91 See id. at 310 (explaining that because the patentee’s bacterium possessed “markedly different characteristics” than any found in nature, it is patentable subject matter).
92 See id.; Brent J. Jensen, Live, Human-Made Bacteria as Patentable Subject Matter Under 35 U.S.C. § 101: Diamond v. Chakrabarty, 1980 BYU L. REV. 705, 712 (arguing that developing the markedly different characteristics test was unnecessary because Chakrabarty’s bacterium, which, according to the author, was more practically useful than the unmodified bacterium, fit into
that the bacterium at issue in Chakrabarty did not share characteristics with any bacterium found in nature.\(^\text{93}\) The Court did not clarify, however, whether the bacterium at issue would have been patentable subject matter had it only possessed characteristics that were markedly different from the bacterium from which it was derived, and not from all bacteria found in nature.\(^\text{94}\)

B. The Patentable Subject Matter Requirement as Applied to DNA in Association for Molecular Pathology v. Myriad

In 2013, in Association for Molecular Pathology v. Myriad Genetics, Inc., the U.S. Supreme Court was faced with the question of whether a purified and isolated substance constitutes patentable subject matter.\(^\text{95}\) In Myriad, the defendant offered diagnostic tests for mutations in the BRCA1 and BRCA2 genes.\(^\text{96}\) Such mutations put women at an exceptionally high risk for breast and ovarian cancer.\(^\text{97}\) Myriad held patents claiming 1) the sequence of the BRCA1 and BRCA2 genes, and 2) the complementary DNA ("cDNA") of the BRCA1 and BRCA2 genes.\(^\text{98}\)

the definition of “manufacture” set out in 35 U.S.C. § 101); Smith, supra note 38 (explaining that Chakrabarty does not make clear whether iPS cell technologies would be patentable).

\(^{93}\) Chakrabarty, 447 U.S. at 310.

\(^{94}\) See id.

\(^{95}\) See Association for Molecular Pathology v. Myriad Genetics, Inc., 133 S. Ct. 2107, 2113 (2013); Tup Ingram, Association for Molecular Pathology v. Myriad Genetics, Inc.: The Product of Nature Doctrine, Revisited, 29 BERKELEY TECH. L.J. 385, 387 (2014) (describing the potential implications of the Myriad ruling).

\(^{96}\) See Myriad, 133 S. Ct. at 2112; Sarah Elizabeth Hagan, DNA Real Estate: The Myriad Genetics Case and the Implications of Granting Patent Eligibility to Complementary DNA, 35 N. ILL. U. L. REV. 205, 221 (2014) (stating the concern that patents on genetic testing could increase the cost of such tests, which would harm both the public and the scientific community).

\(^{97}\) See Myriad, 133 S. Ct. at 2112–13.

\(^{98}\) See id. at 2113. Two steps must occur in order for a protein to be created from DNA: transcription and translation. See Ribosomes, Transcription and Translation, NATURE EDUC., http://www.nature.com/scitable/topicpage/ribosomes-transcription-and-translation-14120660 [http://perma.cc/AX7X-6WXK]. DNA is a double-stranded molecule containing the nucleotides adenine, guanine, thymine, and cytosine. See id. An adenine molecule on one strand of DNA will always bind to thymine on the opposite strand of DNA, and cytosine will always bind with guanine. See id. During transcription, the two stands of DNA are “unzipped,” and a complementary strand of RNA forms opposite each strand of DNA. See id. This complementary strand is called messenger RNA, or mRNA. See id. Once the mRNA is transcribed, it is processed. See id. Certain segments of the DNA are removed from the sequence, and the remaining segments, called exons, are spliced together. See Ribosomes, Transcription and Translation, supra. The cDNA, which was claimed in the defendant’s patent, is the DNA complement of processed mRNA. See Myriad, 133 S. Ct. at 2111; cDNA Production, DAVIDSON COLL. DEP’T OF BIOLOGY (2002), http://www.bio.davidson.edu/genomics/method/cDNAproduction.html [http://perma.cc/VDQ9-KC8S]. Although the genes contained in cDNA exist in nature, cDNA itself does not exist in nature and is a synthetic creation by scientists. See Myriad, 133 S. Ct. at 2119; DAVIDSON COLL. DEP’T OF BIOLOGY, supra. In Myriad, the Court reasoned that the BRCA genes contained in the form of cDNA can be patented because cDNA does not exist in nature. See 133 S. Ct. at 2119.
The Court held that the sequence of the BRCA genes was a naturally occurring segment and was not merely patent-eligible through isolation.99 Justice Thomas explained that although Myriad had discovered the locus of the BRCA genes, Myriad did not do anything further to alter the genes.100 The Court did, however, find that cDNA was patent eligible because it was a synthetic creation that did not occur in nature.101 To the Court, the principal difference between the cDNA and the naturally occurring gene, aside from cDNA not occurring in nature, was that only DNA contained introns, or “junk” regions of DNA that do not encode proteins and are eventually removed from the genetic transcript by the cell.102 Although cDNA contains the same functional genetic material as DNA, encodes the same proteins, and thereby essentially performs the same function, only cDNA, according to the Court, was patentable subject matter.103

\section*{C. Interim Guidance by the USPTO}

On December 16, 2014, the USPTO released interim guidance on patent subject matter eligibility (“Guidance”).104 In the Guidance, the USPTO sets forth a three-step test for determining whether a product or process is patentable subject matter under § 101.105

The first step requires an examiner to determine whether the claim is directed to a process, machine, manufacture, or composition of matter.106 If the claim is not so directed, the claim is not eligible subject matter under

\begin{itemize}
 \item 99 See Myriad, 133 S. Ct. at 2118.
 \item 100 See id. at 2116 (explaining that § 101 prevents the tools of innovation from being “tie[d] up”); id. at 2118 (noting how Myriad’s claims only listed the steps it took to discover gene sequences and did not “rely in any way on the chemical changes that result from the isolation of a particular section of DNA”).
 \item 101 See id. at 2119.
 \item 102 Id.; Reply Brief for Petitioners at 9–10, Myriad, 133 S. Ct. 2107 (No. 12-398), 2013 WL 1850746, at *9 (explaining the difference between DNA and cDNA).
 \item 103 See Myriad, 113 S. Ct. at 2119; Reply Brief for Petitioners, supra note 102, at 9–10.
 \item 105 Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 74, 622.
 \item 106 Id. Claims directed to these categories are patentable under 35 U.S.C. § 101. See id.
§ 101. The second step requires a determination as to whether the claim is directed to a law of nature, a natural phenomenon, or an abstract idea. If the claim is not directed to one of these categories, the claim is eligible subject matter. If the claim is directed to one of these categories, the examiner should carry out the third step of the test, which requires the examiner to determine whether the claim recites additional elements that amount to significantly more than the judicial exception. “Judicial exception” in the context of the third step refers to each of the three categories listed in the second step.

The Guidance sets out examples of considerations identified by the U.S. Supreme Court for determining whether a claim amounts to “significantly more” than the judicial exception. Examples of limitations that qualify as “significantly more” include improvements to another technology or technical field, applying the judicial exception with a particular machine, effecting a transformation or reduction of a particular article to a different state or thing, and adding a specific limitation other than what is conventional in the field.

Although the Guidance attempts to create a bright-line test for determining patentable subject matter, the test set out by the Guidelines does not clarify the uncertainty that has surrounded the patentable subject matter requirement since the Myriad decision. For example, the Guidance seem-

108 Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 74, 622 (explaining that courts are careful when deciding if a claim falls under a judicial exception “because at some level all inventions embody, use, reflect, rest upon, or apply a law of nature, natural phenomenon, or abstract idea”).

110 Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 74, 622–23 (outlining the “markedly different characteristics analysis,” which “compares the nature-based product limitation to its naturally occurring counterpart in its natural state,” unless there is no naturally occurring counterpart, in which case “the comparison should be made to the closest naturally occurring counterpart”).

111 Id. Laws of nature, abstract ideas, and natural phenomenon are the three categories defined by courts to be unpatentable subject matter. See supra note 40 and accompanying text (outlining the three categories of judicial exclusions).

113 Id. Examples of limitations that were found not to qualify as “significantly more” include mere instructions to implement an abstract idea on a computer, appending well-understood activities previously known to the industry, adding insignificant activity to the judicial exception, and generally linking the use of the judicial exception to a particular technological environment or field of use. Id.

114 Myriad, 133 S. Ct. at 2119 (finding cDNA to be patentable subject matter despite containing naturally occurring nucleotide sequences); Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 74, 618.
ingly conflicts with *Myriad* with regard to whether the “markedly different characteristics” analysis should be applied. The Guidance indicates that nature-based products are subject to the markedly different characteristics analysis used to identify exceptions to the judicial exclusions. According to the markedly different characteristics test, a claim directed to a nature-based product that does not exhibit markedly different characteristics from its naturally occurring counterpart falls into a judicial exclusion category and is not patentable subject matter unless it recites elements that amount to “significantly more” than the judicial exception.

The presence of the markedly different characteristics test in the Guidance is seemingly inconsistent with prior case law. The markedly different characteristics test was mentioned in *Chakrabarty* as dictum, but it was not used to determine whether the bacterium at issue constituted patentable subject matter. Furthermore, this test was not used or mentioned in *Myriad*. If this test had been utilized, the court would have likely reached the opposite result with regard to the cDNA claims. Due to this inconsistency between the Guidance and prior precedent, the Guidance does not provide much clarity as to how the patentable subject matter requirement should be applied to inventions in the life sciences.

115 *Myriad*, 133 S. Ct. at 2119 (reasoning that because cDNA is a man-made construct, it is patentable subject matter in spite of the fact that it encodes the same proteins as naturally occurring DNA sequences); Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 74, 618.

117 Id.

118 Id.; see also *Myriad*, 133 S. Ct. at 2119 (finding a patent claim directed to cDNA is patentable subject matter without assessing whether such cDNA contained “markedly different characteristics” to DNA found in nature); *Chakrabarty*, 447 U.S. at 309–10 (mentioning in dictum that the defendant’s bacterium, which was found to be patent eligible subject matter, possessed markedly different characteristics from bacteria found in nature).

119 *Chakrabarty*, 447 U.S. at 310 (holding the bacterium at issue to be “not nature’s handiwork” and therefore to be patentable subject matter).

120 *Myriad*, 133 S. Ct. at 2119 (explaining that “the lab technician unquestionably creates something new when cDNA is made” in response to petitioner’s argument that a cDNA nucleotide sequence is dictated by nature).

121 Id. Because there is very little difference between the function and properties of DNA and cDNA, the Court could have found that the cDNA contained no “markedly different” characteristics from DNA, which is found in nature. Id. Following such logic, cDNA would be unpatentable under the test set out by the USPTO’s Guidance. Id.; Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 74, 618.

III. THE PROBLEM OF PATENT THICKETS IN LIFE SCIENCES

Courts have, in the past, considered arguments concerning patent thickets in cases concerning patent invalidity. A patent thicket is an overlapping set of intellectual property rights that requires an inventor to seek a license in order to commercialize an invention. Cumulative innovation, or innovations which grow off existing innovations, is an economic asset. Patent thickets are viewed negatively because they make commercializing cumulative innovation difficult, which discourages inventors from improving upon the innovations of others. Section A discusses the Federal Circuit’s treatment of patent thickets in Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co. Section B discusses the U.S. Supreme Court’s more recent consideration of the issue in Association for Molecular Pathology v. Myriad Genetics, Inc.

A. The Federal Circuit’s Consideration of Patent Thickets in Ariad

The U.S. Court of Appeals for the Federal Circuit’s 2010 decision in Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co. marked one of the first cases in which the Federal Circuit considered arguments concerning the creation of patent thickets surrounding biochemical pathways. Although patentable subject matter was not at issue in Ariad, arguments made by the plaintiff concerning the dangers of patent thickets could also be relevant in a case in which iPS cell preparation methods are at issue.

123 See infra notes 130–148 and accompanying text (discussing how the U.S. Supreme Court and the Federal Circuit have considered patent thickets when evaluating whether an invention is patentable subject matter).

125 Id. (defining a patent thicket as “a dense web of overlapping intellectual property rights that a company must hack its way through in order to actually commercialize new technology”).

126 Id. at 121 (arguing that the large number of patents in the United States hinders the commercialization of new technologies because it requires innovators to pay patent-holders in order to utilize certain products, processes, and methods).

128 See infra notes 130–138 and accompanying text.

129 See infra notes 139–148 and accompanying text.

130 See Ariad Pharm., Inc. v. Eli Lilly & Co. (Ariad II), 598 F.3d 1336, 1340 (Fed. Cir. 2010); Defendant Eli Lilly and Company’s Opposition Claim Construction Brief at 15, Ariad Pharm., Inc. v. Eli Lilly & Co. (Ariad I), 529 F. Supp. 2d 106, 117 (D. Mass. 2007), aff’d in part, rev’d in part, 598 F.3d 1336 (Fed. Cir. 2010) (No. 02 CV 11280 RWZ), 2003 WL 24337596 (stating that Ariad had claimed in its patent all compounds that function to inhibit NF-kB).

131 See Opposition Claim Construction Brief, supra note 130, at 15 (explaining that the patent claims at issue were not limited to any particular compound containing any particular structure); Takahashi et al. 2007, supra note 11, at 862.
In *Ariad*, the defendant, Ariad, had created a molecule that reduced binding of the transcription factor NF-kB, which in turn reduces cytokine production.\(^\text{132}\) Ariad had claimed use of all substances that achieve the result of reducing binding of NF-kB to NF-kB recognition sites.\(^\text{133}\) At the district court level, plaintiff Eli Lilly had argued that the cytokine production pathway in which NF-kB is involved is a natural phenomenon.\(^\text{134}\) Eli Lilly asserted that Ariad’s claim to all means of reducing NF-kB binding without naming the specific molecule that inhibits binding created a patent thicket surrounding the cytokine production pathway.\(^\text{135}\)

Judge Rader responded to Eli Lilly’s argument in his dissent.\(^\text{136}\) Judge Rader stated that Congress, and not the courts, is ultimately responsible for balancing upstream and downstream innovation.\(^\text{137}\) Although the court ultimately did not find Eli Lilly’s argument to be persuasive, *Ariad* was one of the first cases to bring attention to the potentially problematic effects that patent thickets surrounding biochemical pathways or processes could have on technological advancement in the biological sciences.\(^\text{138}\)

B. The Supreme Court’s Consideration of Patent Thickets in Myriad

The U.S. Supreme Court has also considered the issue of patent thickets.\(^\text{139}\) In 2013, in *Association for Molecular Pathology v. Myriad Genetics, Inc.*, the U.S. Supreme Court heard arguments regarding the need to prevent the creation of patent thickets so as not to hinder biological research.\(^\text{140}\) Pe-
titioners argued that Myriad’s claim of DNA containing the BRCA1 and BRCA2 genes should be invalid because DNA is a naturally occurring product.\footnote{See id.; Reply Brief for Petitioners, \textit{supra} note 102, at 9–10 (explaining that Myriad’s proposed standard for § 101 would be “whether the composition is a result of ‘human intervention’ ”).} The Court held the claim to be invalid, explaining that although Myriad had discovered the locus of the BRCA genes, Myriad did not do anything further to alter the genes.\footnote{See Myriad, 133 S. Ct. at 2118 (“Many of Myriad’s patent descriptions simply detail the iterative process of discovery by which Myriad narrowed the possible locations for the gene sequences that it sought [Myriad’s claims do not] rely in any way on the chemical changes that result from the isolation of a particular section of DNA.”).} Accordingly, the BRCA genes were found not to be patentable subject matter.\footnote{See id.} Justice Thomas emphasized in his opinion that the very purpose of patents is to promote creation, and by “tying up” natural phenomena, which are the basic tools of scientific research, the patent system would inhibit future innovation premised upon such phenomena.\footnote{See id. at 2116 (explaining § 101’s purpose as a preventative measure against patent thickets). Although the Court’s ruling arguably prevents patent thickets surrounding DNA, another concern is whether such a ruling will discourage genetic research. \textit{See Editorial, After DNA Patent Ruling, Congress Must Encourage Genetic Research, WASH. POST (June 13, 2013), https://www.washingtonpost.com/opinions/after-dna-patent-ruling-congress-must-encourage-genetic-research/2013/06/13/c786d98-4588-11e2-b05f-3ea3f0e79bb5a_story.html [https://perma.cc/47NT-DZVV] [hereinafter \textit{Congress Must Encourage Genetic Research}] (arguing that Congress must develop a better scheme by which the patent system can foster genetic research but still protect upstream research tools); \textit{Intellectual Property and Genomics, NAT’L INSTS. OF HEALTH (Oct. 30, 2014), http://www.genome.gov/19016590 [http://perma.cc/7K8D-6RKN] (stating that the National Institutes of Health and the National Human Genome Research Institute were “very pleased” with the ruling in \textit{Ariad} and believe that \textit{Ariad} will promote progress in the field of genomic medicine).}}

Although \textit{Myriad} and \textit{Ariad} differ in that only in \textit{Myriad} was patentable subject matter at issue, both cases represent two contrasting ways in which courts have grappled with the issue of patent thickets in the life sciences field.\footnote{See Myriad, 133 S. Ct. at 2116 discussing the goal of keeping scientific research tools in the public domain); \textit{Ariad I}, 529 F. Supp. 2d at 117 (explaining that the courts are not responsible for balancing upstream and downstream innovation).} The fact that \textit{Myriad} was decided recently in 2013 could suggest that courts are more willing than they were five years ago to consider the effect of a validating decision on patent thickets in the biological field.\footnote{See Myriad, 133 S. Ct. at 2116; \textit{Ariad I}, 529 F. Supp. 2d at 117.} The \textit{Myriad} decision could also suggest that the Court’s view of what constitutes patentable subject matter is evolving to become more restrictive.\footnote{See Myriad, 133 S. Ct. at 2116 (disallowing patents on DNA sequences, despite their potential to help scientists detect mutations).} Contrastingly, the \textit{Myriad} decision could simply be an outlier, and future decisions could more closely resemble the approach taken in \textit{Ar-}
iad, which seems to consider less carefully the possibility that a validating decision would create a patent thicket.\(^{148}\)

IV. NEW STANDARDS WITH WHICH TO EVALUATE PATENTABLE SUBJECT MATTER IN THE CONTEXT OF LIFE SCIENCES INVENTIONS AND METHODS

Recent decisions related to the patentability of purified products, living organisms, and methods evidence the ongoing struggle of the courts to identify the boundaries of patentable subject matter, especially in the field of biotechnology.\(^{149}\) The lack of clear boundaries in this area leaves unclear whether induced pluripotent stem cells (“iPS cells”) and methods for preparing iPS cells are in fact patentable.\(^{150}\) iPS cells are only one example of an invention within the life sciences that neither clearly meets the patentable subject matter requirement nor explicitly falls under the definition of “product of nature” in the context of 35 U.S.C. § 101.\(^{151}\) Many inventions in the life sciences field, like iPS cells, are derived from a product of nature, and researchers in this field have no clear way to anticipate whether such inventions will be patentable.\(^{152}\)

Developing a clearer standard with which to evaluate patentable subject matter in the context of the life sciences would not only assist inventors in anticipating whether their creations are patentable, but it would also assist judges, who often have a limited scientific background, in assessing whether complex inventions fit under the broad categories of patentable

\(^{148}\) See Myriad, 133 S. Ct. at 2116; Ariad I, 529 F. Supp. 2d at 117.

\(^{149}\) See supra notes 84–122 and accompanying text (explaining how courts have previously applied the patentable subject matter requirement to life sciences innovations); see also Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347, 2360 (2014). In 2014, in Alice Corp. Party Ltd. v. CLS Bank International, the U.S. Supreme Court once again confronted the issue of determining what constitutes patentable subject matter and again fell short of articulating a clear standard. See 134 S. Ct. at 2360. Although the Court emphasized that the machine-or-transformation test is still useful, the holding in Alice suggests that patent holders will need to show something beyond tying a law of nature, abstract idea, or physical phenomenon to a machine. See id. at 2357.

\(^{150}\) See Alice, 134 S. Ct. at 2357; Bilski v. Kappos, 561 U.S. 593, 603 (2010).

\(^{152}\) See supra notes 84–122 and accompanying text (explaining why there is no clear standard with which to determine whether an invention derived from a product of nature is patentable).
subject matter set out in § 101.153 Section A articulates a standard with which patentable subject matter can be evaluated in the context of life sciences inventions.154 Section B articulates a standard with which methods patents can be evaluated.155

\textit{A. Evaluating Patentable Subject Matter in the Context of the Life Sciences Using a Modified Chakrabarty Standard}

The U.S. Supreme Court’s 1980 decision in \textit{Diamond v. Chakrabarty} provides the best starting point for determining how much an invention derived from a product of nature must be altered in order to be considered a man-made invention for purposes of § 101.156 In \textit{Chakrabarty}, the Court indicated in its analysis that the bacterium had characteristics that were “markedly different” from any existing bacterium.157 The Court also noted that the bacterium had the potential for significant utility.158 Although this language in \textit{Chakrabarty} provides some direction as to what might constitute a product of nature, courts have not employed this language as a strict standard for evaluating patentable subject matter.159 To promote clarity in this important area of the law, courts should adopt a more clear-cut standard to evaluate when inventions derived from products of nature are patentable under § 101.160

153 See 35 U.S.C. § 101; Johnston, \textit{supra} note 151, at 93 (acknowledging that Congress can develop new laws and courts can adopt practices that will both encourage innovation and prevent the patent system from hindering access to medical treatments).

154 See infra notes 156–196 and accompanying text.

155 See infra notes 197–207 and accompanying text.

157 Chakrabarty, 447 U.S. at 310 (“[T]he patentee has produced a new bacterium with markedly different characteristics from any found in nature and one having the potential for significant utility. His discovery is not nature’s handiwork, but his own; accordingly it is patentable subject matter under § 101.”).

158 See id. at 309–10 (noting that the claim at issue was “a nonnaturally occurring manufacture or composition of matter—a product of human ingenuity ‘having a distinctive name, character [and] use’” and therefore should be patentable) (quoting Hartranft v. Wiegmann, 121 U.S. 609, 615 (1887)).

159 See \textit{id.} at 310. Although Justice Thomas quoted this language in \textit{Myriad}, the Court in \textit{Myriad} did not treat the possession of markedly different characteristics and the potential for significant utility as distinct criteria that must be met in order for an invention to be considered patentable subject matter. See \textit{Association for Molecular Pathology v. Myriad Genetics, Inc.}, 133 S. Ct. 2107, 2117 (2013); Chakrabarty, 447 U.S. at 310. The Court also did not articulate a separate standard that must be met in order for an invention derived from a natural product to be considered patentable subject matter. \textit{Myriad}, 133 S. Ct. at 2117; Chakrabarty, 447 U.S. at 310.

160 35 U.S.C. § 101; \textit{see supra} notes 79–121 and accompanying text (describing the confusion surrounding the patentable subject matter requirement in the context of life sciences).
In order to assess whether a biological invention derived from a product of nature is patentable subject matter, courts should assess: (1) whether the invention at issue possesses “markedly different characteristics” from the natural product from which it was derived; and (2) whether the invention possesses a practical utility, or combination of practical utilities, that does not exist in any product occurring in nature. Because this standard draws on the language used in *Chakrabarty*, it is referred to in this Note as the “modified Chakrabarty standard.”

It is important to note two key differences between the modified Chakrabarty standard and the language used in *Chakrabarty*. First, the Court in *Chakrabarty* indicated that the bacterium at issue possesses characteristics that were “markedly different” than any bacterium found in nature, whereas according to the modified Chakrabarty standard, an invention must possess markedly different characteristics from the product of nature from which the invention is derived. Second, the Court in *Chakrabarty* indicated that the bacterium at issue possessed the potential for significant utility. The modified Chakrabarty standard not only requires the invention to possess practical utility, but it also requires that the invention’s practical utility, or combination of practical utilities, not exist in another known product of nature. This criterion would be separate from the § 101 utility requirement.

Accordingly, section 1 addresses the rationale behind requiring that an invention possess a markedly different characteristic from the natural product from which it was derived. Section 2 addresses why, under the modified Chakrabarty standard, an invention must possess a practical utility or

161 See *Chakrabarty*, 447 U.S. at 310. The goal of this standard is not only to elucidate which inventions in the biotechnology field are patent-eligible, but also to prevent widely-used research tools from being the subject of a patent monopoly. See generally David E. Adelman, *A Fallacy of the Commons in Biotech Patent Policy*, 20 BERKELEY TECH. L.J. 1021 (2005) (arguing that limiting access to scientific research tools through patent protection can hinder technological innovation).

162 See *Chakrabarty*, 447 U.S. at 310 (finding a bacterium with characteristics “markedly different” from any found in nature to be patentable).

163 See id.

164 See id.

165 It is unclear whether the Court intended to convey that merely meeting the utility requirement was evidence in support of an invention being patentable subject matter. See 35 U.S.C. § 101; *Chakrabarty*, 447 U.S. at 310.

166 See *Chakrabarty*, 447 U.S. at 310.

168 See infra notes 170–186 and accompanying text.
combination of practical utilities that does not exist in any known product of nature.169

1. An Invention Must Possess a “Markedly Different” Characteristic from the Natural Product from Which It Was Derived

The modified \textit{Chakrabarty} standard compares the invention to only the natural product from which it was derived for three principal reasons.170 First, requiring that an invention possess a markedly different characteristic from all products of nature could prompt researchers to tailor their inventions to comply with this requirement, which could compromise the effectiveness of certain medical treatments or other biological inventions.171 The synthetic creation of products that resemble products found in nature is becoming increasingly common.172 In the case of iPS cells and of most cell lines maintained in laboratories, certain minor differences do exist between the laboratory cells and cells found in nature.173 Generally, however, the more similar a cell line maintained in a laboratory is to a cell line found in nature, the more useful that cell line is for scientific research.174 In the case of an iPS cell, for example, the more similar an iPS cell is to a naturally occurring embryonic stem cell, the more likely it will be able to differentiate into nearly every type of human cell.175

If a court were to set out a standard that a cell created in a laboratory must contain a certain degree of dissimilarity to all naturally occurring cells, scientists might purposefully try to create iPS cells that possess that degree of dissimilarity instead of trying to create cells that are as similar as possible to naturally occurring cells.176 Doing so would likely compromise the effective-

\begin{footnotes}
\footnote{169}{See infra notes 187–196 and accompanying text.}
\footnote{170}{See infra notes 171–186 and accompanying text.}
\footnote{171}{See \textit{Chakrabarty}, 447 U.S. at 307 (noting that patent laws promote economic development by creating incentives for ingenuity through the use of exclusive rights).}
\footnote{172}{See Johnston, \textit{supra} note 151, at 93 (discussing the rise in the number of patents granted on biomedical materials and processes).}
\footnote{173}{See Barbara S. Mallon et al., \textit{Comparison of the Molecular Profiles of Human Embryonic and Induced Pluripotent Stem Cells of Isogenic Origin}, 12 STEM CELL RES. 376, 376 (2014) (discussing the results of a study that found embryonic stem cells and iPS cells possessed a similar methylation pattern and genetic expression pattern, which suggested that the two types of cells have a high degree of similarity); Takahashi et al. 2007, \textit{supra} note 11, at 861. \textit{But see} Kazim H. Narsinh et al., \textit{Comparison of Human Induced Pluripotent and Embryonic Stem Cells: Fraternal or Identical Twins?}, 19 MOLECULAR THERAPY 635, 635 (2010) (explaining that iPS cells have varying differentiation propensities and do not always develop into the desired cell type).}
\footnote{174}{See Robin Feldman & Deborah Furth, \textit{The Intellectual Property Landscape for iPS Cells}, 3 STAN. J.L. SCI. & POL’Y 16, 24 (2010) (explaining that improper reprogramming can hinder an iPS cell’s ability to differentiate into different types of cells and can result in teratoma formation).}
\footnote{175}{See id.}
\footnote{176}{\textit{Chakrabarty}, 447 U.S. at 307 (explaining how scientists have an economic motivation to create patentable inventions). The goal and purpose of patent law, as articulated in \textit{Chakrabarty}, is}
ness of any medical treatments or diagnostic methods for which the iPS cells would be used.177 Cells that are intentionally created to be dissimilar to a certain degree to naturally occurring stem cells might not differentiate into other types of cells as readily or consistently, which could render medical treatments or diagnostic tools derived from these cells less effective.178

Second, the modified \textit{Chakrabarty} standard assesses whether a markedly different characteristic exists only between the invention and the product from which it was derived because society should incentivize scientists to create inventions that mimic naturally-occurring biological products, for such inventions have substantial utility.179 Isolated insulin, for example, is essential to the management of Type I diabetes.180 Isolated adrenaline is critical in the treatment of cardiac arrest or anaphylaxis.181 Although insulin and adrenaline used therapeutically possess certain structural differences from naturally-occurring insulin and adrenaline, it is not always the case that a natural product created or isolated in a laboratory will be markedly to drive inventiveness and research efforts. \textit{See id.} If such laws will only protect inventiveness and research efforts that result in iPS cells that are similar to, but not as similar as possible to ESCs, such laws will drive research efforts to create iPS cells that are patent eligible subject matter but not necessarily optimal for use as a diagnostic tool and medical treatment. \textit{See id.; Feldman & Furth, supra note 174, at 24 (explaining the consequences of improper iPS cell reprogramming).}

177 \textit{See Feldman & Furth, supra note 174, at 24.}

178 \textit{See id.; Narsinh et al., supra note 173, at 635 (finding significant variation in the differentiation propensities of iPS cells and ESCs). \textit{But see Mallon et al., supra note 173, at 376 (finding no gene probe with expression that altered significantly between human iPS cells and ESCs). Regardless of policy interests in favor of or against a finding that iPS cells do contain markedly different characteristics from naturally occurring ESCs, a court would have difficulty examining the molecular differences between iPS cells and ESCs because it is still very much under debate whether significant molecular difference exist between the two types of cells. See Narsinh et al., supra note 173, at 635. \textit{But see Mallon et al., supra note 173, at 376 (finding that iPS cells and ESCs have highly similar genetic expression and methylation patterns). Because of the lack of definitive research on the topic, a court would be likely to approach the issue of whether marked differences exist between iPS cells and ESCs by looking at the non-molecular differences between the cells, such as the fact that iPS cells can be obtained without harming human embryos. See Chakrabarty, 447 U.S. at 310; Narsinh et al., supra note 173, at 635. \textit{But see Mallon et al., supra note 173, at 376 (finding that iPS cells and ESCs possess a high degree of similarity).}

179 \textit{See Chakrabarty, 447 U.S. at 307 (explaining the purpose of the patent system as an incentive for innovation); Paul Cole, USPTO Patent Eligibility Guidelines: A Topsy-Turvy Approach for Natural Products, IPWATCHDOG (Mar. 10, 2014), http://www.ipwatchdog.com/2014/03/10/uspto-patent-eligibility-guidelines-natural-products/id=48451 [http://perma.cc/D3NV-AASQ] (arguing that the \textit{Myriad} decision creates uncertainty surrounding patents on biotechnology, which could, in turn, harm the economy).}

different than that which exists in nature.182 If there were a strict ban on patenting inventions that do not markedly differ from products of nature, there would not be as much incentive for scientists to isolate or create a compound or cell that could be of enormous benefit to the public.183

Finally, scientists’ capacity to identify genes and their function has vastly expanded since the 1980s and the Court’s decision in \textit{Chakrabarty}.184 Due to the technological progress that has been made, plaintiffs can more easily identify naturally occurring organisms that share characteristics with the invention at issue.185 Therefore, requiring that an invention possess markedly different characteristics than any organism found in nature presents a greater challenge to patentability today than it did when \textit{Chakrabarty} was decided.186

2. The Invention Must Possess a Practical Utility or Combination of Practical Utilities That Does Not Exist in Any Known Product of Nature

In order to safeguard against patent thickets on natural products, the modified \textit{Chakrabarty} standard also requires that the invention possess a practical utility or combination of practical utilities that does not exist in any product of nature.187 If the invention possessed only as much practical utility as an existing natural product, there would be little or no public benefit rendered by granting a patent on such an invention.188 There could, how-

182 See Narsinh et al., \textit{supra} note 173, at 635 (finding significant variation in the differentiation propensities of iPS cells and ESCs). \textit{But see} Mallon et al., \textit{supra} note 173, at 376 (finding no gene probe with expression that altered significantly between human iPS cells and ESCs). In the case of iPS cells or in the case of many types of cell lines maintained in a laboratory, there is often no markedly different characteristic, aside from differences in molecular markers, between the cells maintained in a lab and the cells as they exist in nature. \textit{See} Narsinh et al., \textit{supra} note 173, at 635. \textit{But see} Mallon et al., \textit{supra} note 173, at 376.

183 See Johnston, \textit{supra} note 151, at 85 (explaining the importance of patents and listing how patents “[a]ct as an incentive for biomedical research,” “[s]ecure funds to turn early discoveries into medical products,” “[e]nsure that knowledge is disclosed to the public,” and “[i]ncrease the chance that people will have access to . . . medical products they need”); \textit{Congress Must Encourage Genetic Research}, \textit{supra} note 144 (arguing that because the \textit{Myriad} decision could discourage genetic research by denying scientists patents on genes used for diagnostic purposes, Congress should reexamine other sources of economic motivation for scientists to conduct such research).

184 See \textit{Chakrabarty}, 447 U.S. at 307; P.C.Y. Woo et al., \textit{Then and Now: Use of 16S rDNA Sequencing for Bacterial Identification and Discovery of Novel Bacteria in Clinical Microbiology Laboratories}, 14 \textit{CLINICAL MICROBIOLOGY \& INFECTION} 908, 908 (2008) (explaining how, since the 1990s, scientists’ ability to sequence DNA and identify genes has led to the discovery of novel bacteria).

185 See \textit{Chakrabarty}, 447 U.S. at 307; Woo et al., \textit{supra} note 184, at 908.

186 See \textit{Chakrabarty}, 447 U.S. at 307; Woo et al., \textit{supra} note 184, at 908.

187 See \textit{infra} notes 188–196 and accompanying text (explaining how the modified \textit{Chakrabarty} standard protects against patent thickets, or patent monopolies on technologies within a given field).

188 See Johnston, \textit{supra} note 151, at 85 (explaining how the patent system incentivizes scientific research and enables scientists to obtain the financial backing to further develop discoveries); William Hubbard, \textit{The Competitive Advantage of Weak Patents}, 54 B.C. L. REV. 1909, 1910
however, be consequences from granting a monopoly on a man-made product that is a derivative of a natural product. 189 If a scientist, for example, sought a patent on a complementary DNA (“cDNA”) sequence and, unlike the BRCA cDNA in the 2013 U.S. Supreme Court case Association for Molecular Pathology v. Myriad Genetics, Inc., the cDNA sequence at issue had no practical utility as a diagnostic tool, the granting of a patent on such an invention would render little public benefit. 190 The patent could, however, force scientists to obtain licensing agreements to utilize certain cDNA sequences in the course of their research. 191 By this logic, granting patents on certain inventions derived from natural products could slow the pace of scientific research within certain fields. 192

Although the modified Chakrabarty standard would make clearer to scientists when natural-product-derived inventions are and are not patentable, the standard is still sufficiently flexible to allow judges to interpret and apply the law as they see fit. 193 The term “markedly different characteristic,” for example, in the context of the modified Chakrabarty standard, is not defined. 194 The standard also does not articulate the degree to which the practical utility of the invention must differ from the practical utility of an existing natural product. 195 Each court may construe these terms as broadly or as narrowly as it deems appropriate given the circumstances of each case. 196

B. Evaluating Patentable Subject Matter in the Context of Life Sciences

Methods Using the Transformation-or-Thicket Guidelines

Just as the modified Chakrabarty standard would elucidate the patentable subject matter requirement as applied to life sciences products, the transformation-or-thicket standard would clarify which processes in meth-

189 See Johnston, supra note 151, at 85 (explaining that patents can hinder public access to medical treatments through the creation of monopolies, and patents on research tools can increase the cost of scientific research); Hubbard, supra note 188, at 1910 (stating that policymakers try to “balance the incentive effect of U.S. patents against the competitive costs”); Parchomovsky & Wagner, supra note 188, at 14 (stating that most U.S. patents are not commercialized and thereby “pass their lives in complete idleness, gathering dust rather than revenues”).
190 See Myriad, 133 S. Ct. at 2119; Johnston, supra note 151, at 85.
192 See Johnston, supra note 151, at 85; Hultquist, supra note 191, at 286.
193 See supra notes 170–192 and accompanying text (articulating requirements for patentable subject matter under modified Chakrabarty standard).
194 See supra notes 170–192 and accompanying text.
195 See supra notes 170–192 and accompanying text.
196 See supra notes 170–192 and accompanying text.
ods in the life sciences context are patentable subject matter. A source of confusion surrounding process patents is the degree to which the machine-or-transformation test established by the Federal Circuit in 2008 in *In re Bilski* should be given weight when determining if a process is patentable subject matter. Under the transformation-or-thicket standard, courts should continue to consider the machine-or-transformation test as an investigative tool when evaluating whether life sciences research methods that involve altering a product of nature constitute patentable subject matter. Courts should additionally consider whether finding that the invention at issue is patentable subject matter would lead to the creation of patent thickets. If courts do not consider the issue of patent thicket creation, crucial research tools could become tied up, which would require scientists to seek licensing agreements in order to conduct certain research.

A court should not uphold a patent on a method if the party challenging the patent has proven by clear and convincing evidence that the patent (1) could lead to the creation of a patent thicket over a certain category of research tools, and (2) such a category of research tools possesses a practical utility that differs from existing accessible research tools. Because this standard requires courts to consider both the machine-or-transformation test and the aforementioned thicket criteria to evaluate patentable subject matter, this Note refers to this standard as the “transformation-or-thicket standard.”

Similar to the modified *Chakrabarty* standard, the transformation-or-thicket standard provides some degree of notice to scientists as to whether their methods inventions will be patentable; the standard, however, is still somewhat flexible and allows courts to define the terms within the standard

197 See infra notes 198–207 and accompanying text.
198 See *In re Bilski*, 545 F.3d 943 (Fed. Cir. 2008) (en banc), aff’d, Bilski v. Kappos, 561 U.S. 593, 604 (2010). The Federal Circuit explained the machine-or-transformation test by stating that a claimed process is patent eligible under § 101 if the process is tied to a machine or apparatus or if it transforms something into a different state or thing. 35 U.S.C. § 101; *In re Bilski*, 545 F.3d at 954. The U.S. Supreme Court established that the machine-or-transformation test is not the sole test for deciding when an invention is a patent eligible process, but it is instead a useful and important clue, an investigative tool, for determining whether some claimed inventions are processes under § 101. 35 U.S.C. § 101; *Bilski*, 561 U.S. at 604.
199 See *In re Bilski*, 545 F.3d at 954; Moore, supra note 50, at ¶¶ 8–12 (2010) (summarizing the Federal Circuit’s explanation of the machine-or-transformation test and explaining the types of transformations that would be considered sufficient to satisfy the patentable subject matter requirement).
200 See Johnston, supra note 151, at 85 (explaining that patents limit access to materials or methods that might lead to the discovery of other important products).
201 See Johnston, supra note 151, at 85; Hultquist, supra note 191, at 286.
202 See infra notes 204–222 and accompanying text (articulating the requirements for patentable subject matter under the transformation-or-thicket standard).
203 See infra notes 204–222 and accompanying text.
as they see fit. The goal of the transformation-or-thicket standard is not to establish a bright-line test, but to encourage greater scrutiny of inventions that could be considered important or basic tools of research. Adopting such a standard would also encourage parties to rely on experts to testify as to why an invention would or would not create a patent thicket. The involvement of more individuals with relevant scientific knowledge would allow judges and juries, who often have little scientific background, to better understand the effect of upholding the patent at issue on the relevant scientific field as a whole.

V. APPLYING THE NEW STANDARDS TO PATENTS ON IPS CELL TECHNOLOGIES

Section A of this Part explains how the modified standard of the U.S. Supreme Court’s 1980 decision in *Diamond v. Chakrabarty* would be applied to patent claims directed to induced pluripotent stem (“iPS”) cell lines. Section B explains how the transformation-or-thicket standard would be applied to patent claims directed to methods of creating iPS cells.

A. Under the Modified Chakrabarty Standard, iPS Cell Lines Are Likely to Be Considered Patentable Subject Matter

Under the modified Chakrabarty standard, iPS cells would be found to be patentable subject matter. Because iPS cells are pluripotent, or can differentiate into many types of cells, a court would be likely to find that iPS cells possess a “markedly different characteristic” from the skin cells.

204 See *Chakrabarty*, 447 U.S. at 310; Johnston, *supra* note 151, at 85. The patent system provides an incentive for scientists to pursue certain areas of research. Johnston, *supra* note 151, at 85. In order for this incentive to be in place, scientists must know the boundaries and limitations of the patent system. See *id*. If scientists are unaware of whether their invention is patentable or not, such incentive might be diminished. *See id.*

205 See *Hultquist, supra* note 191, at 286 (explaining the consequences of granting patents on critical research tools); *Karshtedt, supra* note 37, at 949 (proposing that “completeness” be a separate requirement of patentability to improve access to research tools).

206 See *Karshtedt, supra* note 37, at 988 n.300 (recognizing that expert testimony can help courts to identify broad claims to research tools); *Cutting Through the Patent Thicket, Bloomberg Bus.* (Dec. 19, 2005), http://www.bloomberg.com/bw/stories/2005-12-19/cutting-through-the-patent-thicket [http://perma.cc/2EJX-SRP2] (suggesting that the scientific community should be able to comment on patent filings so that the United States Patent and Trademark Office (“USPTO”) is informed as to what inventions are truly new).

207 See *Karshtedt, supra* note 37, at 998 n.300; *Cutting Through the Patent Thicket, supra* note 206.

208 See *infra* notes 210–222 and accompanying text.

209 See *infra* notes 223–233 and accompanying text.

210 See *infra* notes 211–212 and accompanying text.
from which they are derived.211 Furthermore, the court would be likely to find that iPS cells possess a combination of practical utilities that no product of nature possesses, that combination being: (1) iPS cells are pluripotent, and (2) iPS cells can be obtained without destroying a human embryo.212

One potential shortcoming of the modified Chakrabarty standard is that the term “practical utility” in the context of the second step of the analysis is left to the courts to interpret and define.213 “Practical utility” should be construed narrowly enough such that research tools and other basic necessities for invention are not tied up by patents.214 At the same time, “practical utility” should be construed broadly enough such that patents can be obtained on biotechnologies without substantial difficulty such that there is still incentive to innovate.215

In the context of iPS cells, a court could find that the ease at which iPS cells are obtained as compared to embryonic stem cells (“ESCs”) does not warrant a practical utility.216 Such an interpretation, however, would compromise the incentive to develop better and more efficient methods of creating pluripotent stem cells.217 Because the creation of easily obtainable stem

211 See Diamond v. Chakrabarty, 447 U.S. 303, 310 (1980) (finding a bacterium with characteristics “markedly different” from any found in nature to be patentable); Narsinh et al., supra note 173, at 635 (finding significant variation in the differentiation propensities of iPS cells and ESCs); Takahashi et al. 2007, supra note 11, at 861. But see Mallon et al., supra note 173, at 376 (finding no gene probe with expression that altered significantly between human iPS cells and ESCs).

212 See Takahashi et al. 2007, supra note 11, at 861. Adult stem cells are another type of naturally occurring stem cell available to scientists; embryonic stem cells and iPS cells, however, have the ability to differentiate into more different types of cells than adult stem cells. See Murnaghan, supra note 2. Furthermore, embryonic stem cells and iPS cells can both be maintained in a laboratory more easily than adult stem cells. See id. For these reasons, iPS cells would possess a combination of practical utilities (i.e., a differentiation potential equivalent to that of an embryonic stem cell and an ability to be obtained without destroying an embryo) that is not present in any product of nature or existing research tool. See id.; Takahashi et al. 2007, supra note 11, at 861.

213 See Chakrabarty, 447 U.S. at 310 (finding a bacterium with characteristics “markedly different” from any found in nature to be patentable); supra notes 156–196 and accompanying text (articulating requirements for patentable subject matter under modified Chakrabarty standard).

214 See SHAPIRO, supra note 124, at 120 (describing the problem of patent thickets); Ed Levy et al., Patent Pools and Genomics: Navigating a Course to Open Science? 16 B.U. SCI. & TECH L. REV. 1, 3 (2010) (explaining that critics of gene patents believe that such patents would disrupt scientific research by creating patent thickets).

215 See SHAPIRO, supra note 124, at 120 (describing the consequences of granting overly broad patents).

216 See Chakrabarty, 447 U.S. at 310; supra notes 156–196 and accompanying text (articulating requirements for patentable subject matter under modified Chakrabarty standard).

217 See SHAPIRO, supra note 124, at 121. The availability of patent protection for iPS cells, however, would incentivize iPS cell research. See Hubbard, supra note 188, at 1910 (explaining that the patent system encourages innovation and allows American inventors to be internationally competitive in commercializing their products); Parchomovsky & Wagner, supra note 188, at 12 (arguing that the U.S. patent system leads to more efficient production).
cells is highly economically beneficial, the term “practical utility” should be construed to incentivize this activity.218

Because the modified Chakrabarty standard can be easily applied to inventions that are derivatives of natural products, the adoption of the modified Chakrabarty standard would give iPS cell researchers and other biologists a better indication of whether their work products are patentable subject matter.219 This would, in turn, allow them to focus their efforts on technologies, such as iPS cells, that would be likely to be patent-eligible under this standard.220

Although the modified Chakrabarty standard is fairly easily applied to iPS cells, courts might have difficulty applying this standard to inventions that are derived from more than one natural product.221 While courts should have the discretion to choose what natural product should be used for purposes of the modified Chakrabarty analysis, courts should base their analyses on the one or more natural products that make up the invention in largest part.222

B. Under the Transformation-or-Thicket Standard, Method Patents Related to iPS Cells Would Likely Be Upheld as Valid

Under the transformation-or-thicket standard, a court would be likely to uphold only certain iPS cell preparation methods claims.223 With regard to the first element of the test, iPS cells clearly undergo a transition when transfect-

218 See SHAPIRO, supra note 124, at 121 (describing the patent system as a “spur” to innovation).
219 See Chakrabarty, 447 U.S. at 310; supra notes 156–196 and accompanying text (articulating requirements for patentable subject matter under modified Chakrabarty standard).
220 See Takahashi et al. 2007, supra note 11, at 861 (explaining the characteristics and composition of iPS cells and how they compare to naturally occurring stem cells); supra notes 156–196 and accompanying text (articulating requirements for patentable subject matter under modified Chakrabarty standard).
222 See Interim Guidance on Patent Subject Matter Eligibility, 79 Fed. Reg. at 622–23 (explaining that when a product does not have a “naturally occurring counterpart,” the patent examiner should compare the product to the “closest naturally occurring counterpart”); supra notes 156–196 and accompanying text (articulating requirements for patentable subject matter under modified Chakrabarty standard).
223 See Association for Molecular Pathology v. Myriad Genetics, Inc., 133 S. Ct. 2107, 2116 (2013) (recognizing that, without 35 U.S.C. § 101, patents could be granted on crucial research tools, creating patent thickets and thereby hindering scientific research and progress); Ariad Pharm., Inc. v. Eli Lilly & Co. (Ariad II), 598 F.3d 1336, 1361 (Fed. Cir. 2010) (explaining how the Patent Act balances encouraging innovation and protecting research tools through the requirement that patent applicants include a written description of the invention); supra notes 197–207 and accompanying text (describing the application of the transformation-or-thicket standard to iPS cell preparation methods).
ed with pluripotency genes.224 A fibroblast, upon transfection, clearly “transforms” into another cell type with different characteristics and capabilities.225 Therefore, a claim directed to iPS cell preparation methods would clearly meet the first element of the transformation-or-thicket analysis.226

Whether an iPS cell preparation method claim meets the second element, however, would depend on the scope of the claim.227 For example, a claim teaching a method of iPS cell preparation using a combination of specific genes, such as Oct3/4, Sox2, c-Myc, and Klf4, would be upheld as patentable subject matter.228 Since the genes utilized are specifically enumerated, such a claim would be unlikely to create a patent thicket on a broader category of research tools.229 A claim teaching a method of iPS cell preparation using “a combination of pluripotency genes” would be less likely to be upheld under the transformation-or-thicket standard, even if the patent holder had enabled the creation of iPS cells using many combinations of pluripotency genes.230

Likewise, a claim teaching a method of iPS cell preparation using one specifically named gene in combination with other pluripotency genes (e.g., using Oct3/4 in combination with one or more pluripotency genes) would also be unlikely to be upheld under this standard.231 This is because certain

224 See Takahashi et al. 2007, supra note 11 at 862 (comparing the gene expression profile of differentiated iPS cells with those of various somatic cell types).

225 See Mallon et al., supra note 173, at 376 (observing a high degree of similarity in the gene expression patterns and methylation patterns of iPS cells and ESCs); Takahashi et al. 2007, supra note 11, at 861 (observing a high degree of similarity between iPS cells and naturally occurring stem cells with regard to morphology, surface antigens, and gene expression, among other characteristics). But see Narsinh et al., supra note 173, at 635 (observing variation in the differentiation propensities of iPS cells, which could pose an obstacle to researchers seeking to use iPS cells as an alternative to ESCs).

226 See Mallon et al., supra note 173, at 376 (observing a high degree of similarity between iPS cells and ESCs); Takahashi et al. 2007, supra note 11, at 861 (observing a high degree of similarity between iPS cells and naturally occurring stem cells with regard to morphology, surface antigens, and gene expression, among other characteristics). But see Narsinh et al., supra note 173, at 635 (observing variation in the differentiation propensities of iPS cells).

227 See Baker, supra note 35 (explaining the techniques by which doctors created iPS cells, both using Oct3/4 and Sox2 reprogramming factors); Takahashi et al. 2007, supra note 11, at 861 (utilizing reprogramming factors Lin28, Nanog, Oct3/4, and Sox2 to create iPS cells).

228 See Baker, supra note 35 (describing using Oct3/4, Sox2, Klf4, and c-Myc to create iPS cells); supra notes 124–127 and accompanying text (describing the concern surrounding overly broad patents in the stem cell field).

229 See Hultquist, supra note 191, at 286 (describing how if there were patents on research tools, royalties paid on such research tools would be disproportionate to the value realized by the user of the research tool).

230 See supra notes 197–207 and accompanying text (explaining the requirements for upholding a patent under the transformation-or-thicket standard).

231 See Takahashi et al. 2007, supra note 11, at 862 (utilizing Oct3/4 and Sox2 to create iPS cells); supra notes 124–127 and accompanying text (describing the concern surrounding overly
genes—namely Oct3/4 and Sox2—are utilized in many known iPS cell preparation protocols, which suggests that using one or both of these genes could be crucial to iPS cell preparation.232 If the other genes used are not specifically enumerated, such a claim could create a patent thicket over all methods of cellular reprogramming using Oct3/4 or Sox2, which would pose a significant hindrance to scientists in their quests to develop medical treatments from iPS cells.233

VI. WHERE WOULD A VALIDATING OR INVALIDATING DECISION LEAVE THE FIELDS OF STEM CELL TECHNOLOGY AND PATENT LAW?

In addition to articulating a clearer standard by which patentable subject matter should be evaluated, a court hearing a challenge to an iPS cell line or iPS cell preparation patent should pay close attention to the practical effects of an invalidating or validating decision on the fields of biological research and patent law.234

Should a patent on any type of iPS cell technology be upheld in an invalidity challenge, such a result could impact the availability of what are now considered to be basic research tools in the life sciences.235 Increasingly, labs across the United States are preparing and manipulating iPS cell lines, developing medical treatments and diagnostic methods derived from iPS cell lines, and engineering nuclear reprogramming factors.236 Regardless of the purpose for which iPS cell labs are using patented iPS cell technology, it is possible that labs across the country are infringing on existing patent rights by using iPS cell lines, preparation methods, or nuclear reprog

233 See Hultquist, supra note 191 at 286; e.g., ‘828 Patent; Takahashi et al. 2007, supra note 11, at 861; Yu et al., supra note 72, at 1917.

234 See infra notes 236–242 and accompanying text.

235 See infra notes 236–242 and accompanying text.

236 Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC), NAT’L INSTS. OF HEALTH (Feb. 5, 2015), http://report.nih.gov_categorical_spending.aspx [http://perma.cc/V83S-5KB3] [hereinafter Estimates of Funding]. In 2011, 2012, and 2013, the amount given by the National Institutes of Health (“NIH”) in grant money toward non-embryonic stem cell research was $1.015 billion, $1.157 billion, and $1.044 billion, respectively. Id. In the same years, the amount given by the NIH in grant money toward embryonic stem cell research was $288 million, $310 million, and $300 million, respectively. Id. As of March 2014, the amount that the NIH anticipated to spend on non-embryonic stem cell research in the years 2014 and 2015 was $1.072 billion in each year. Id. As of March 2014, the NIH anticipated to spend $307 million in 2014 and in 2015 on embryonic stem cell research. Id.
gramming factors in the labs’ experimentation. If a holder of patent rights over a certain iPS cell technology were to start suing labs for infringement, iPS cell research could come to a temporary halt until the infringing labs are able to obtain licensing agreements or develop an alternative method to prepare iPS cells without infringing on existing patents.

Alternatively, should an iPS cell technology patent be held invalid, such a ruling could raise concerns that the court is construing patentability requirements too narrowly or ruling in light of hindsight bias. Additionally, a finding of invalidity could decrease incentive for scientists to develop medical treatments derived from iPS cell technology. Until scientists perfect a method by which iPS cells can be produced at a relatively high yield, scientists will continue to rely in part on embryonic stem cells to conduct

237 See Estimates of Funding, supra note 236. This report indicated that over $1 billion each year since the year 2010 has been spent by the NIH alone to fund non-embryonic stem cell research, excluding umbilical cord blood research, which in turn indicates the vast number of laboratories across the United States conducting such research. See id.; Dustin Siggins, Funding of Embryonic Stem Cell Research Down Dramatically, Report Notes, LIFE SITE NEWS (Dec. 5, 2013), https://www.lifesitenews.com/news/funding-of-embryonic-stem-cell-research-down-dramatically-report-notes [https://perma.cc/GB8Q-53HE] (observing that the California Institute for Regenerative Medicine and the state government of Maryland “are funding far more adult stem cell research projects, while embryonic stem cell research has decreased nearly to nothing”).

238 See Estimates of Funding, supra note 236. This scenario assumes that the holder of an iPS cell technology patent would act in a similar manner as the patent-holder in Association for Molecular Pathology v. Myriad Genetics, Inc. See 133 S. Ct. 2107, 2119 (2013); Derek So et al., Commercial Opportunities and Ethical Pitfalls in Personalized Medicine: A Myriad of Reasons to Revisit the Myriad Genetics Saga, 11 CURRENT PHARMACOGENETICS & PERSONALIZED MED. 98, 99–100 (2013). In this case, although Myriad permitted laboratories to use the patented cDNA and DNA to conduct experimentation relating to the BRCA genes, Myriad would not permit laboratories to reveal the results of BRCA mutation tests to test subjects. See So et al., supra, at 99. An iPS patent-holder could, however, neglect to enforce his or her patent rights and permit laboratories to use the patented technology. See id. Permitting further research on one’s patented product could actually be in the best interests of the patent-holder, as discovering new applications of the patented product would presumably increase its value, in turn increasing profit to the patent-holder. See Charles W. Adams, Blocking Patents and the Scope of Claims (unpublished manuscript), https://web.stanford.edu/dept/law/ipsc/pdf/adams-charles.pdf [https://perma.cc/Q6J4-HT3M].

239 See 35 U.S.C. § 103 (2012) (“A patent . . . may not be obtained . . . if the differences between the claimed invention and the prior art are such that the claimed invention as a whole would have been obvious before the effective filing date . . . to a person having ordinary skill in the art to which the claimed invention pertains.” (emphasis added)). Since the filing date of the invention is likely to be several years or decades before the dispute, a fact-finder is likely to have hindsight bias, or to be predisposed to thinking that an invention is obvious because technology has advanced since the time of invention. See id. Such bias has the potential to distort the outcome of patent suits in which nonobviousness is at issue. See id.

240 See Johnston, supra note 151, at 85 (explaining that the patent system incentivizes innovation, furthering technological progress); Hubbard, supra note 188, at 1910 (explaining how the U.S. patent system provides incentives to scientists and enables American patent-holders to be internationally competitive); Parchomovsky & Wagner, supra note 188, at 12 (arguing that the patent system leads to more efficient production).
stem cell research. Slowing the rate of iPS cell research will only prolong scientists’ dependency on embryonic stem cells and, in turn, will prolong the embryonic stem cell debate.

CONCLUSION

Given that induced pluripotent stem cell (“iPS cell”) technology is a rapidly burgeoning area of biological research that has attracted hundreds of scientists across the United States over the past decade, it is likely that claims directed toward iPS cell technologies will be challenged in coming years. The lack of clarity surrounding the patentable subject matter requirement as it applies to life sciences renders unclear whether iPS cell technologies would be invalidated if challenged. In order to encourage research and innovation in the stem cell field, courts should establish clearer standards to evaluate patentable subject matter in the context of life sciences products and methods. The modified Chakrabarty standard and the transformation-or-thicket standard would encourage innovation by providing clarity in this area. Courts and patent examiners would be given much needed guidance with which to determine the patentability of future impactful biological inventions. Accordingly, courts and examiners would be able to better balance the patent system’s goal of incentivizing innovation while keeping essential research tools in the public domain.

SARAH SMITH
