FERC Net Metering Decisions Keep States in the Dark

Benjamin Hanna

Boston College Law School, benjamin.hanna@bc.edu

Follow this and additional works at: http://lawdigitalcommons.bc.edu/ealr

Part of the Administrative Law Commons, Energy and Utilities Law Commons, Environmental Law Commons, Jurisdiction Commons, and the State and Local Government Law Commons

Recommended Citation

This Notes is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Environmental Affairs Law Review by an authorized editor of Digital Commons @ Boston College Law School. For more information, please contact nick.szydlowski@bc.edu.
FERC NET METERING DECISIONS KEEP STATES IN THE DARK

BENJAMIN HANNA*

Abstract: As the effects of climate change increasingly become a reality, policymakers have recognized the need for more renewable energy, such as wind and solar power, and the benefits of distributed generation. One important way that both renewable energy and distributed generation are being addressed is through the use of electrical net metering policies. Net metering allows property owners to generate their own electricity and to receive credit from their utility company for any excess. State net metering policies are pervasive—forty-three states and the District of Columbia have adopted some form of net metering—and yet uncertainty remains about their jurisdictional limits. Further, FERC’s guidelines on net metering are unclear and are preventing state policies from reaching their full potential. This Note reviews the net metering rules of three different states and analyzes the useful aspects of each. It then argues that FERC should provide clearer guidelines that allow states to expand their net metering policies and more effectively foster distributed renewable energy generation.

INTRODUCTION

Americans installed photovoltaic ("PV") solar energy systems at a record pace in 2013, increasing the total amount of energy produced by PV solar energy systems in the United States to over 12,000 megawatts.¹ In fact, more solar energy systems have been installed in the United States during the past eighteen months than in the prior thirty years.² And yet, even though the cost of installing solar energy systems is decreasing, they remain beyond the reach of many electricity consumers, unless they come with financial incentives.³

One such incentive is net metering, a utility billing mechanism that allows customers with on-site generation systems to store excess electricity on the

² Id.
grid.4 Those customers can then use the value of that stored electricity later to
offset their consumption if their on-site generation system does not meet their
demands.5 Net metering is the most common incentive for solar installations
and other forms of distributed renewable energy generation such as wind and
geothermal.6 It is so common that as of July, 2013, forty-three states and the
District of Columbia had net metering policies in place.7

The federal government has exclusive jurisdiction over the interstate
transmission of electricity as well as the interstate sale of wholesale8 electricity.
9 Retail energy sales10 and intrastate transmission and distribution, on the
other hand, fall within state jurisdictions.11 Given the complex system of pow-
er distribution in the United States and the ephemeral nature of energy, certain
transfers of electricity within the federal system can raise jurisdictional prob-
lems.12 To avoid these issues, states have attempted to shape net metering laws
that maximize the efficacy of their renewable energy policies without over-
stepping their jurisdictional boundaries.13

The Federal Energy Regulatory Commission (FERC) has resolved juris-
dictional disputes regarding state net metering policies in two significant deci-

4 SOLAR ELEC. POWER ASS’N, RATEMAKING, SOLAR VALUE AND SOLAR NET ENERGY METER-
ing—A PRIMER 1 (2013), available at https://www.solarelectricpower.org/media/51299/sepa-nem-
of high voltage transmission lines that move electricity from power plants to substations throughout
cc/7FEB-HRP2. Electricity then moves from the substations to consumers along lower voltage distrib-
ution lines. Id.
5 SOLAR ELEC. POWER ASS’N, supra note 4, at 1.
6 LORI BIRD ET AL., NAT’L RENEWABLE ENERGY LAB., REGULATORY CONSIDERATIONS ASSO-
www.nrel.gov/docs/fy14osti/60613.pdf, archived at http://perma.cc/Q6SD-A8RG (follow the archival
link and open the “PDF” tab to access the document); Steven Ferrey, Virtual “Nets” and Law: Power
Navigates the Supremacy Clause, 24 GEO. INT’L ENVTL. L. REV. 267, 268 (2012)[hereinafter Ferrey,
Virtual “Nets” and Law]; see Renewable Energy, ENERGY.GOV, http://www.energy.gov/science-
from systems distributed throughout the grid rather than from a single, centralized power plant. See infra
notes 24–45 and accompanying text.
7 Net Metering, DATABASE OF STATE INCENTIVES FOR RENEWABLES & EFFICIENCY (Sept. 2014),
cce/UR6K-ZXYS.
8 A wholesale sale is any transaction for electricity between two entities that are not the end users.
10 A retail sale of electricity is a direct sale to the end user. BOSSelman ET AL., supra note 8, at
763; see infra notes 46–52 and accompanying text.
12 Ferrey, Virtual “Nets” and Law, supra note 6, at 269, 321–22.
13 Id. at 321; see infra notes 243–68 and accompanying text.
These decisions, however, were both adjudications rather than rule-makings and are thus limited to the specific facts of each case. Due to the rapid growth in the use of on-site renewable energy and the corresponding development of state net metering policies, the specific facts that gave rise to those decisions are insufficient guideposts for states. Despite the lack of general policy guidance from the FERC decisions, states are continuing to design creative net metering policies to encourage the use of on-site renewable electricity.

This Note argues that given the pervasive use and success of state net metering regulations, FERC should provide clearer guidelines through rule making that allow states to continue to be laboratories of net metering policies, but to do so within a more predictable and secure regulatory environment. Part I begins by explaining the mechanics of net metering and its role in the electricity marketplace. It then explores the federal policies related to net metering. Part II reviews the two crucial FERC decisions, MidAmerican Energy Co. in 2001 and Sun Edison, LLC in 2009. Part III then examines the net metering policies of Colorado, Massachusetts, and New Jersey, to demonstrate innovative state approaches to follow. And finally, part IV analyzes and contrasts the three state policies and, based on that analysis, argues that current FERC regulatory guidance should be updated given the importance of net metering to renewable energy growth.

14 See Sun Edison, LLC, 129 FERC ¶ 61146, 61618 (2009) (finding that net metering is lawful when there is no net transfer of electricity from a customer to a utility at the end of a billing period); MidAmerican Energy Co., 94 FERC ¶ 61340, 62261 (2001) (finding that federal law governs when an electricity-producing customer has sold more power to the utility than the customer has purchased from the utility over the course of the billing period).
15 Sun Edison, LLC, 129 FERC ¶ 61618; MidAmerican, 94 FERC ¶ 62261; Ferrey, Virtual “Nets” and Law, supra note 6, at 307, 309.
17 See Ferrey, Virtual “Nets” and Law, supra note 6, at 280–88.
18 See infra notes 269–85.
19 See infra notes 24–70 and accompanying text.
20 See infra notes 71–109 and accompanying text.
21 See infra notes 110–33 and accompanying text.
22 See infra notes 134–202 and accompanying text.
23 See infra notes 203–85 and accompanying text.
I. A HISTORY OF NET METERING POLICY AND REGULATION

A. Net Metering in Context

1. The Basics—Distributed Generation and Net Metering

Net metering is a utility billing mechanism that allows customers who generate their own power to send excess electricity back onto the grid.24 This essentially permits these customers to run their electricity usage meters backwards when they produce more electricity than they need, offsetting their electricity bills with the power generated on-site.25 The excess power produced by the customer’s on-site generation system, such as rooftop solar panels, is sent back to the grid and is then consumed by other customers.26 Different state policies grant the customer credits for that excess electricity, and some state policies permit the customer to allocate credits to other consumers.27

Net metering policies incentivize building owners to generate the electricity that is consumed at that site on a daily basis; a power generation practice known as distributed generation.28 It is known as distributed generation because the systems used to produce the power, such as rooftop solar panels, geothermal sources, or wind turbines, are distributed throughout the grid.29 Although this contrasts with the centralized model of power production in the United States that dominated the twentieth century, on-site power generation is not a novel concept.30 Before the advent of large-scale steam turbines, energy requirements were met through on-site generation.31 Even as the power generation system became increasingly centralized, electricity consumers that required reliable power, such as hospitals and telecommunications centers, rec-

24 SOLAR ELEC. POWER ASS’N, supra note 4, at 1.
26 Non-Discriminatory Open Access Transmission Tariff, 18 C.F.R. § 35.28(2012). Another way net metering is commonly conceptualized is as an energy banking system, whereby the customer sends excess power to the grid for storage, and then may draw from that energy stock at a later time at no additional cost. Ferrey, Virtual “Nets” and Law, supra note 6, at 271.
27 See infra notes 134–202 and accompanying text (reviewing state net metering policies and the various choices those policies give consumers).
31 U.S. DEP’T OF ENERGY, supra note 30, at i.
ognized the benefits of having their own generation capabilities in emergency situations.32

Distributed generation differs from conventional power production and transmission in a variety of ways.33 First, the central station model of power generation wastes a tremendous amount of energy: approximately two-thirds of all fuel used to generate electricity in the United States is lost as heat during the generation process.34 Second, centralized power sources require the electricity to be transported long distances to reach end-users, and during transit, another 7% to 10% of the electricity is lost.35 In contrast, a distributed generation system has less transmission loss because the electricity travels a short distance before being used.36

Distributed generation also produces environmental benefits.37 In 2012, electricity generation accounted for approximately thirty-nine percent of the carbon dioxide (CO2) emitted by the United States.38 Net metering policies incentivize the development of distributed renewable power.39 Distributed generation from renewable energy sources such as solar in turn, benefits the environment by reducing CO2 emissions.40 Distributed generation systems, particularly those placed on rooftops, also require less land than centralized power plants and their accompanying transmission infrastructure.41

Distributed generation also provides reliability to electricity consumers in a way that traditional centralized generation often fails to do.42 They do so

32 Id.
33 See Fucci, supra note 29, at 345–47.
34 Id. at 346.
35 Id. at 345–46. (resulting in approximately 73% to 76% usable electricity losses due to generation an transmission).
36 See Baker-Branstetter, supra note 3, at 3. One study found that distributed generation systems can reduce transmission losses by thirty percent. DEP’T OF ENERGY, supra note 30, at 3-18.
37 DEP’T OF ENERGY, supra note 30, at 8.
39 Baker-Branstetter, supra note 3, at 8. Approximately three quarters of CO2 emissions from electricity generation come from coal power stations, whereas the other quarter comes from natural gas power stations. Id.
40 Id.
41 U.S. DEP’T OF ENERGY, supra note 30, at 6-1, 6-14.
42 Fucci, supra note 29, at 347. Reliability is a measure of the grid’s ability to meet consumers’ demand for electricity. U.S. DEP’T OF ENERGY, supra note 30, at 2-1. In the wake of the devastation caused by Hurricane Sandy in October, 2012, President Obama created the Hurricane Sandy Rebuilding Task Force (the “Task Force”) to identify and remove “obstacles to resilient rebuilding while taking into account existing and future risks and promoting the long-term sustainability of communities and ecosystems in the Sandy-affected region.” HURRICANE SANDY REBUILDING TASK FORCE, HURRICANE SANDY REBUILDING STRATEGY 13 (2013), available at http://portal.hud.gov/hudportal/documents/huddoc?id=HSRebuildingStrategy.pdf, archived at http://perma.cc/EKL2-5D36. Among the Task Force’s recommendations was to improve electric grid operations by incorporating distributed generation. Id. at 68. The Task Force noted that increasing distributed generation would assist in
simply by diversifying the sources that supply electricity.43 As such, disruptions like blackouts and brownouts can be prevented by distributing power sources throughout the grid.44 Distributed generation systems can also provide supplemental or back-up power to critical consumers like hospitals.45

2. Electricity Ratemaking

Net metering encourages building owners to install on-site renewable power generators by guaranteeing that the local utility will compensate the customer for any excess electricity.46 The value of the credit granted by the utility for the customer’s self-produced power is key to determining whether the investment in an on-site generator is worth it, and if so, how quickly the investment will pay off.47 More simply stated, how the price of electricity is set has significant impacts on the renewable energy generator’s rate of return.48

The retail price of electricity is based on its reasonable cost of production.49 The rate a utility may charge is typically set in a “ratemaking” proceeding, at which a utility considers what the reasonable cost of the various components of delivering electricity is likely to be.50 The components of retail prices typically include transmission and distribution costs, such as the cost of power lines and facilities, as well as the cost of generation.51 It also incorporates the fixed costs of serving customers, such as metering and billing.52
Due to the many components and considerations that comprise the retail rate of electricity, the cost of the power itself is only part of the bundle.53 In some jurisdictions, such as Massachusetts, regulators must also consider encouraging environmentally friendly technologies like solar generation.54 The regulators must then account for these different priorities and also keep rates predictable and understandable to the public.55

There are many components and considerations that comprise the retail rate of electricity, with the cost of the actual electricity only accounting for part of the figure.56 Jurisdictions differ as to whether net metering households should be compensated for the power they produce at the retail rate or, instead, for just the cash value of the power itself—known as the avoided cost rate.57 Customers whose meters run backwards at the retail rate can receive up to four times the value of the electricity.58 Meanwhile, the customer does not incur any of the other costs embedded within the retail rate such as transmission and distribution costs.59

Net metering customers who are paid at the retail rate for their excess electricity can thus cause the electricity utility company to lose revenue because only the utility incurs the distribution and transmission costs, but the customers are compensated as if they incurred them as well.60 A utility might then attempt to recover these costs by assessing a surcharge across its entire customer base—both net metering customers and traditional customers.61 This results in non-net metering customers effectively subsidizing net metering customers.62 Various states where net metering occurs are attempting to resolve this issue.63 In Arizona, for example, regulators are attempting to assess a small

53 SOLAR ELEC. POWER ASS’N, supra note 4, at 5.
54 Id. at 6. For example, the Massachusetts Green Communities Act of 2008 required electricity distribution companies to provide retail access to sellers of renewable energy. Massachusetts Green Communities Act, Ch. 169, § 86, 2008 Mass. Acts 284.
55 Massachusetts Green Communities Act, Ch. 169, § 86, 2008 Mass. Acts 284.
56 Powers, supra note 28, at 637.
57 See STEVEN FERREY, THE LAW OF INDEPENDENT POWER 4:1 (30th ed. 2013) [hereinafter FERREY, THE LAW OF INDEPENDENT POWER] (describing avoided cost as the price the utility would pay to generate the electricity itself or purchase it from a source other than the customer); Ferrey, Virtual “Nets” and Law, supra note 6, at 280–88 (comparing state policies and noting that some states give net metering customers the retail rate whereas others give the avoided cost rate).
58 Ferrey, Sale of Electricity, supra note 45, at 232.
59 Ferrey, Virtual “Nets” and Law, supra note 6, at 303.
60 Id.
61 Id.
62 Id.
fee on net metering customers to offset utility revenue losses caused by customer-generated electricity payouts at the retail rate.64

B. Federal Underpinnings of Net Metering

1. The Federal Power Act

The Federal Power Act (FPA) grants FERC jurisdiction over the transmission of electricity in interstate commerce, the sale of wholesale electricity in interstate commerce, and any facilities used for those purposes.65 The FPA defines the sale of electricity at wholesale as the sale of electricity to any person for resale.66 It limits federal jurisdiction to the three aforementioned areas by specifying that FERC has no authority "over facilities used for the generation of electric energy or over facilities used in local distribution or only for the transmission of electric energy in intrastate commerce.”67

FERC’s jurisdiction over interstate transmission and wholesale electricity sales includes the authority to regulate rates and schedules.68 Furthermore, the FPA gives FERC the power to change a rate or a rule it finds unreasonable.69 In furtherance of this authority, the FPA prohibits terms of service that are unreasonable or unduly preferential as between different classes of customers.70

2. The Public Utility Regulatory Policies Act of 1978

Following the oil crisis of the 1970s, Congress passed the Public Utility Regulatory Policies Act of 1978 (“PURPA”) with the goal of encouraging cogeneration and small-scale power production.71 With PURPA, Congress sought energy efficiency through conservation, streamlined use of utility facilities and resources, and fair electric rates for consumers.72 Congress further aimed to diversify the country’s energy portfolio by encouraging the development of

64 Id.
65 Federal Power Act, 16 U.S.C. § 824(a)–(b) (2012). The FPA defines electric energy in interstate commerce as electricity transmitted from a state and consumed anywhere outside that state but within the United States. Id. § 824(c).
66 See id. § 824(d).
67 See id. § 824(b)(1).
68 See id. § 824(a)–(c). A schedule in the electric utility context refers to a listing of all rates and charges that are included in any transmission or sale of electricity. See id. § 824(d). Rates that a utility may charge for electricity are based on the cost to the utility of providing the service, plus allowing the utility to earn a fair rate of return to remain in business. BOSSELMAN ET AL., supra note 8, at 78.
70 Id. § 824d(b) (2012).
71 Id. § 824a-3(a); Joshua Fershee, Renewable Mandates and Goals, in THE LAW OF CLEAN ENERGY: EFFICIENCY AND RENEWABLES 77, 77 (Michael B. Gerrard ed., 2011).
72 FERREY, THE LAW OF INDEPENDENT POWER, supra note 57, at 4:1; see 16 U.S.C. § 824a-3(b) to -3(c) (requiring utilities to buy electricity from, and sell electricity to, small power producers at just and reasonable rates).
alternative power. It recognized that two underlying problems with the energy industry were the reluctance of the utilities to deal with alternative power producers and alternative producers’ fear of regulation.74

PURPA attempted to address those problems and to achieve Congress’s goals by creating a class of facilities that would receive special regulatory treatment and financial incentives.75 Pursuant to PURPA, FERC defined the characteristics necessary for a facility to be deemed a “qualifying facility” (“QF”) and receive the attendant benefits.76 FERC rules focus on the size and fuel use of a facility to determine whether it is a QF.77 A small power production facility is a QF if it generates eighty megawatts (“MW”) or less and its primary energy source is biomass, waste, renewable resources, or geothermal resources.78 Along with small renewable power generators, cogeneration facilities may also obtain QF status.79

QFs receive three benefits under PURPA: (1) the right to sell energy to a utility, (2) the right to purchase certain services from utilities, and (3) exemption from different regulatory burdens.80 Further, utilities are required to purchase electricity from a QF at the avoided cost rate.81 The first two benefits impose obligations directly upon utilities to physically connect with and purchase power from QFs.82 PURPA thus breaks up the monopoly on generation of power that utilities would otherwise hold.83

The exemption of QFs from a variety of federal and state regulations is another important benefit provided by PURPA.84 QFs are exempt from parts of both the FPA and the Public Utility Holding Company Act (“PUHCA”).85 As a general rule, however, QFs are not exempt from Sections 205 and 206 of the

73 FERREY, THE LAW OF INDEPENDENT POWER, supra note 57, at 4:1; see 16 U.S.C. § 824a-3(a) (requiring FERC to make rules encouraging the development of small-scale electricity generation).
76 Fucci, supra note 29, at 349.
77 18 C.F.R. § 292.203 (2013). FERC initially included certain ownership criteria for QFs, prohibiting facilities in which electric utility companies had greater than fifty percent stake. Fucci, supra note 29, at 349. The utility ownership restriction has been repealed. Id.
78 18 C.F.R. § 292.204(a)–(b). A primary energy source is one that comprises at least seventy-five percent of the input at the facility. Id. § 292.204(b).
79 Id. § 292.203(b). The production of electricity produces a tremendous amount of wasted energy, often in the form of heat. Fucci, supra note 29, at 346. A cogeneration facility is one that captures this thermal energy and puts it to use. Id.
80 Kline, supra note 75, at 402; see 16 U.S.C. § 824a-3(a), 824a-3(e) (2012) (requiring utilities to purchase electricity from, and sell electricity to, QFs and exempting QFs from several federal and state regulations).
81 18 C.F.R. § 292.304(a)(2).
83 Id.
84 Id. at 4:6.
85 16 U.S.C. § 824a-3(e).
FPA, which provide for FERC jurisdiction over interstate sales of wholesale electricity and interstate transmission. QFs that generate less than twenty MW, however, are an exception to that general rule—they are exempt from FERC scrutiny under Sections 205 and 206 of the FPA.

Furthermore, QFs’ corporate and financial structures are not subject to federal review, and FERC cannot scrutinize their sales of power or their profit margins. PURPA also exempts QFs from most state regulations. Specifically, QFs are exempted from state regulations regarding rates as well as financial and organizational structures.

The Energy Policy Act of 2005 (“EPACT”) encouraged the widespread adoption of net metering policies at the state level. Under EPACT, state regulatory commissions and electric utilities are required to make net metering services available upon request. Although some states had net metering policies in place prior to EPACT’s passage in 2005, the statute encouraged a jump in the number of state net metering programs, and today forty-three states and the District of Columbia have some form of net metering policy.

EPACT also limited the application of PURPA by narrowing the obligations of utilities to purchase power from QFs. Utilities are no longer required to purchase power from a QF that has access to wholesale electricity markets. Utilities also need not provide transmission services to a QF that is already receiving

86 18 C.F.R. § 292.601(c)(1) (2013); see 16 U.S.C. § 824(a)-824(b) (2012) (granting FERC jurisdiction over the transmission of electricity in interstate commerce, the sale of wholesale electricity in interstate commerce, and any facilities used for those purposes).
87 18 C.F.R. § 292.601(c)(1).
88 FERREY, THE LAW OF INDEPENDENT POWER, supra note 57, at 4:1; Fucci, supra note 29, at 349.
89 Fucci, supra note 29, at 349.
90 18 C.F.R. § 292.602(c). FERC will consider limiting these exemptions upon the request of a state regulatory board. Id. § 292.602(c)(3).
93 SOLAR ELEC. POWER ASS’N, supra note 4, at 2; Ferrey, Virtual “Nets” and Law, supra note 6, at 273. In 1983, Minnesota was the first state to enact a net metering policy. SOLAR ELEC. POWER ASS’N, supra note 4, at 1. Today, Alabama, Idaho, Mississippi, South Carolina, South Dakota, Tennessee and Texas are the only states without a statewide policy. Id.
94 See 16 U.S.C. § 824a-3(m)(1) (2012). Investor-owned utilities fought to reduce the application of PURPA and took particular issue with PURPA’s requirement that they purchase power from QFs at a set rate. Fucci, supra note 29, at 350. PURPA’s requirements did lead to abuses such as cogeneration facilities using a small fraction of captured thermal energy to warm a greenhouse in order to gain QF status, while selling the majority of their energy to utilities, which were required to buy from them. Id.
95 16 U.S.C. § 824a-3(m)(1).
those services from another transmission provider.96 Furthermore, if a competitive marketplace exists for the QF’s electricity—such that the local utility is not the only potential buyer—the local utility can be exempted from PURPA purchase obligations.97 The practical effect of the EPACT amendments is that many utilities are or can become exempt from purchasing electricity from QFs.98 Other than decreased obligations to deal with QFs however, most of the original substantive requirements of PURPA still apply to QFs after EPACT.99

4. The Supremacy Clause in Electricity Markets: The Filed Rate Doctrine

The Supremacy Clause of the United States Constitution establishes that the Constitution and all federal laws made pursuant to it are the “supreme law of the land.”100 State constitutions, laws and regulations are thus deferential to lawful exercises of power by the federal government when the two intersect.101

In 1935, Congress, using its right to delegate its authority, vested in the Federal Power Commission—now FERC—jurisdiction over the interstate transmission and interstate wholesale sale of electricity.102 Further, courts have confirmed that FERC’s power over the interstate sale of electricity is plenary.103 Thus, any state law attempting to regulate interstate transmission or wholesale electricity sales is \textit{de facto} preempted by federal law.104

The filed rate doctrine (the “FRD”) is the application of the Supremacy Clause to the regulation of electricity.105 A utility that transmits or sells power in interstate commerce is regulated by FERC.106 The utility must file the terms of its rates and services with FERC and receive approval from the agency.107 The FRD provides that once the federally regulated utility has satisfied the filing requirement, and FERC approves its rates or terms of service, any state action differing from FERC’s findings is federally preempted.108 Furthermore, the FRD bars all claims, state or federal, that attempt to change FERC-approved rates or terms of service.109

96 Id.
97 Id.
98 Fucci, supra note 29, at 350.
99 FERREY, THE LAW OF INDEPENDENT POWER, supra note 57, at 4:1.
100 U.S. CONST. art. VI, § 2.
101 Id.
102 16 U.S.C. § 824(a) (2012).
104 Ferrey, Virtual “Nets” and Law, supra note 6, at 315.
105 Id.
106 16 U.S.C. § 824(a).
107 Id. § 824d(c).
108 Ferrey, Virtual “Nets” and Law, supra note 6, at 315.
109 Id. at 315–16.
II. FERC ORDERS DEFINE NET METERING

A. MidAmerican

In a 2001 order, the Federal Energy Regulatory Commission (FERC) addressed MidAmerican Energy Company’s (“MidAmerican”) concerns with net metering.110 MidAmerican objected to the Iowa Utilities Board’s (“Iowa Board”) implementation of orders requiring MidAmerican to offer net metering service to three small wind facilities.111 The company filed a petition with FERC seeking a declaratory order that the Iowa Board’s requirements were preempted by the Federal Power Act (FPA) and the Public Utility Regulatory Policies Act (“PURPA”).112 MidAmerican specifically argued that the state orders essentially required it to pay retail rates in violation of PURPA, which stipulates that qualifying facilities (“QFs”) such as the wind turbines at issue, were only entitled to avoided cost rates.113 Further, rather than netting the total amount of power at the end of each billing cycle, MidAmerican argued that every flow of power, in either direction, constituted a sale.114

FERC denied MidAmerican’s request for a declaratory order and found that the Iowa Board had the authority to implement its net metering requirements.115 FERC did not view the Iowa board’s net metering requirements as dealing with the sale of electricity, but rather as a method of accounting for the transactions between the utility and the net metering customers.116 It held that “no sale occurs when an individual homeowner or farmer (or similar entity such as a business) installs generation and accounts for its dealings with the utility through the practice of net metering.”117

Because according to FERC, federal law applies when a sale occurs, the MidAmerican decision was quite significant.118 In the context of net metering, a sale occurs when the customer has sold more power to the utility than the customer has purchased from the utility over the course of the billing period.119

111 Id. Two of the wind turbines were twenty kilowatts in size, whereas the third was forty-five kilowatts. Id. ¶ 62261 n.3.
112 Id.
113 Id.; see supra notes 56–59 and accompanying text (defining the avoided cost rate).
114 MidAmerican, 94 FERC ¶ 62263.
115 Id. ¶ 62262.
116 Id. ¶ 62263.
117 Id.
118 Id.
119 Id. In its order, FERC also held that one month is an allowable time interval during which the net metering process may take place. Id. Previously, FERC had only permitted net metering to be measured over a one-hour interval, though it stated that it was open to considering other time periods. Id. Because the determination as to whether federal law applies focuses on whether the customer has made a net sale at the end of the billing cycle, the allowable length of the billing cycle is crucial. See id.
It is only when a net sale to the utility has occurred that the inquiry then shifts to the status of the net metering facility under PURPA.120 Although the MidAmerican decision was significant, it was nonetheless an adjudication and not a binding rulemaking.121 Its precedential value is thus limited to the facts of the case.122 Despite its limited scope, MidAmerican is viewed by scholars as representing FERC’s approval of state net metering policies.123

B. Sun Edison

In 2009, in Sun Edison, LLC, Sun Edison, a company that finances, installs, operates, and maintains solar energy facilities, petitioned FERC to clarify whether the company’s sales to end-use customers constituted a wholesale sale of electricity that would subject it to the FPA.124 Sun Edison’s business model is to install, connect, and maintain solar facilities on the customer’s property.125 The customer pays little of the upfront costs of solar installation, but agrees to purchase the electricity directly from Sun Edison.126 In states with net metering policies, customers are then able to send their excess power to the grid.127 Sun Edison sought FERC’s assurance that its electricity was not considered wholesale even though it was occasionally resold to utilities in net metering states.128

In keeping with its decision in MidAmerican, FERC found that no sale occurs as long as the end-use customer that purchases Sun Edison’s solar energy does not make a net sale to the utility over the given billing period.129 When no sale occurs from the customer to the utility, no resale has taken place and

120 Id. If a QF makes a net sale to the utility, then the QF is only entitled to be compensated at the avoided cost rate pursuant to PURPA. Id. If a non-QF makes a net sale at the end of the billing cycle, then the facility would be subject to the FPA. Id.
121 Ferrey, Virtual “Nets” and Law, supra note 6, at 305.
122 Id.
123 See id. at 307; Powers, supra note 28, at 637. Transferring credits among customers was not at issue in MidAmerican, and thus FERC did not contemplate the “virtual” net metering scenario that Massachusetts, for example, has adopted. See infra notes 142–55 and accompanying text (explaining Massachusetts’ virtual net metering policy that allows a customer generating her own electricity to allocate credits to other customers).
126 Sun Edison, 129 FERC ¶ 61618.
127 Id. ¶ 61619.
128 Id.
129 Id. ¶ 61621.
Sun Edison is not viewed to be selling at wholesale.130 FERC thus held that Sun Edison’s sales were beyond the purview of the FPA.131

FERC’s \textit{Sun Edison} order further clarified that a customer’s net consumption of electricity is determinative of a sale when it stated, “[a] participant in a net metering program must be a net consumer of electricity—but for portions of the day or portions of the billing cycle, it may produce more electricity than it can use itself.”132 After this decision, net metering is considered permissible when there is no net transfer to a utility at the end of a billing period.133

\section*{III. State Net Metering Policies}

\textit{A. Overview of State Variations}

Forty-three states and Washington, D.C. had net metering policies in place by the end of 2013.134 These policies vary in the sources of renewable energy covered, the eligible size and capacity of the generator, and how the customer is compensated.135 Many states have an aggregate cap that limits how much electricity net metering customers can contribute to the grid overall.136 States with aggregate caps require customers hoping to take advantage of net metering to reserve spots before capacity is filled.137

The states with the most liberal net metering policies allow multiple customers to benefit from a single renewable energy facility without being physically connected to the renewable source.138 These policies, known as “community” or “virtual” net metering, allow neighbors to offset their utility bills as if

\begin{footnotesize}
130 \textit{Id.}
131 \textit{Id.}
132 \textit{Id.} ¶ 61620. Like \textit{MidAmerican Energy Co.}, the \textit{Sun Edison, LLC} order was an adjudication and thus limited to the particular facts of the case. Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 309. A rule promulgated by an administrative agency such as FERC is a “statement of general or particular applicability and future effect designed to implement, interpret, or prescribe law or policy.” 5 U.S.C. § 551(4) (2012). A declaratory order, such as \textit{Sun Edison} or \textit{MidAmerican}, is simply meant to “terminate a controversy or remove uncertainty.” See \textit{id.} § 554(e); \textit{Sun Edison}, 129 FERC ¶ 61621; \textit{MidAmerican}, 94 FERC ¶ 61340. A party must file a petition with FERC to request a declaratory order to terminate a controversy or remove uncertainty. 18 C.F.R. § 385.207 (2014).
133 \textit{Sun Edison}, 129 FERC ¶ 61621.
134 \textit{Net Metering}, supra note 7.
135 See Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 280–88 (giving an overview of the forty-three state policies currently in place).
136 See, e.g., MASS. GEN. LAWS ch. 164, § 139(f) (2012) (capping the contribution by net metering customers to the state’s peak electricity demand at three percent); N.J. STAT. ANN. § 48:3-87(e)(1) (West 2013) (providing that a utility may stop offering net metering services when the total capacity of net metering customers equals two and a half percent of the state’s peak electricity demand).
138 Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 292.
\end{footnotesize}
they each had a generator system on their homes. Because neighbors are not actually connected to the renewable source, the utility grid is used to distribute the power amongst participants in the community. The utility incurs the distribution cost, but the net metering participants are compensated at the full retail rate, as if they had incurred those costs.

B. Massachusetts Net Metering Policy

Massachusetts first authorized net metering by renewable energy systems in 1982. Since then, the state’s net metering policies have been expanded and amended several times, and most significantly in 2008 with the passage of the Green Communities Act.

In its current form, Massachusetts’ net metering policy groups its eligible net metering facilities into three classes. Class I facilities, the smallest, must have a capacity of sixty kilowatts (kW) or less but have no restrictions on the source of the electricity. Class II and Class III facilities must generate electricity from solar, wind, anaerobic digestion, or an agricultural facility and may produce between sixty kW to one megawatt (MW) and one MW to two MW, respectively.

A net metering customer’s excess electricity is compensated differently depending on the customer’s class. Class I and II facilities receive nearly the full retail rate for excess generation, whereas Class III facilities receive closer to the avoided cost rate. Class III facilities are the largest allowed by the statute and most closely resemble a wholesale power producer. This is likely

140. Ferrey, Virtual “Nets” and Law, supra note 6, at 293.
141. Id.
143. See 220 MASS. CODE REGS. 18.02 (2013) (defining Class I, Class II, and Class III net metering facilities).
145. 220 MASS. CODE REGS. 18.02.
146. Id. at 18.04(1)–.04(3).
147. Id.; Ferrey, Virtual “Nets” and Law, supra note 6, at 283.
148. 220 MASS. CODE REGS. 18.02; Ferrey, Virtual “Nets” and Law, supra note 6, at 300.
why utilities are not required to compensate Class III facilities’ excess power at the retail rate.150

One way that Massachusetts net metering regulations differ from other states is in their use of “virtual” credits.151 Any customer who owns a renewable energy generator—referred to as a “host customer” by the Massachusetts Department of Public Utilities—may allocate credits to any other customer of the same utility.152 The credits are then used by the non-host customers to offset their electric bills.153

In Massachusetts, the non-host customer need only be within the same utility service area as the host, but does not need to be related legally or otherwise in order to benefit from the host’s net metering credits.154 The utility is required to carry over from billing period to billing period any remaining net metering credits.155

\section*{C. New Jersey Net Metering Policy}

New Jersey offers net metering to industrial, commercial, and residential customers that generate a “Class I” renewable resource.156 Class I renewable resources include solar, wind, geothermal, and tidal energy.157 The state used to limit the size of a customer’s on-site generation system to two MW, but in

150 Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 300. Class III facilities owned by municipalities or another government entity receive the same compensation for excess generation as Class I and II facilities. 220 MASS. CODE REGS. 18.04(1), .04(3) (2013).

151 Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 297.

152 220 MASS. CODE REGS. 18.05.

153 See id.

154 Id. at 18.05(1); Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 301. If the renewable generator is a Class III facility, then the utility has the option of giving the host customer the cash value of the excess electricity rather than allocating the credits to others. 220 MASS. CODE REGS. 18.05(4). If the host customer transfers net metering credits to a large pool of customers, the utility is more likely to write a check rather than face the administrative costs of many virtual net metering customers. Ferrey, \textit{Virtual “Nets” and Law}, supra note 6, at 306.

155 220 MASS. CODE REGS. 18.05(3) (2013). Massachusetts’ net metering regulations also allow for third-party power producers to participate in the program. Id. at 18.09(5). Furthermore, a host customer is not required to consume a certain amount of the energy it produces. See id. at 18.05 (lacking a requirement that a host customer use a minimum amount of the electricity produced on-site before allocating credits to other customers). In Massachusetts, excess generation from net metering facilities may contribute up to three percent of capacity during the utilities’ periods of peak demand. MASS. GEN. LAWS ch. 164, § 139(f) (2012). In January 2014, a bill was introduced in the Massachusetts legislature to allow all qualifying net metering projects to be built, regardless of the three percent cap, until December 31, 2016. Matt Murphy, \textit{Solar Backers Push to Lift Subsidy Cap}, COMMONWEALTH MAG. (Mar. 12, 2014), http://www.commonwealthmagazine.org/News-and-Features/Online-exclusives/2014/Winter/029-Solar-backers-push-to-lift-subsidy-cap.aspx#.U1bHU1FdVps, archived at http://perma.cc/7K2B-PCPS.

156 N.J. STAT. ANN. § 48:3-87(e)(1) (West 2013).

157 N.J. ADMIN. CODE § 14:8-1.2 (2014).
2010, removed the size limit.158 Despite the removal of a specific size limit, on-site generation capacity is limited by the requirement that the capacity not exceed the amount of electricity used by the customer over a prior twelve-month period.159 Furthermore, a utility may, upon authorization from the New Jersey Board of Public Utilities, stop offering net metering services when net metering customers’ combined capacity equals two and a half percent of the state’s peak electricity demand.160

If a customer generates excess power in a given month, the customer receives a credit—at the retail rate—for the next month’s bill.161 The customer may accumulate credits over the course of a year, but if there are credits remaining at the end of an annualized period, the utility compensates the customer for the avoided cost value of the excess power.162 New Jersey net metering customers are further allowed to choose the month in which their annual billing cycle begins.163 The utility is also expressly prohibited from assessing a fee or surcharge to net metering customers, unless that fee applies to non-net metering customers as well.164

Unlike Massachusetts, New Jersey does not permit virtual net metering for private customers.165 Pursuant to New Jersey’s narrower allowance, an eligibility requirement for net metering is that the energy generation system be located either on the property of the customer or on a contiguous property.166 Furthermore, one energy generation system may only serve one customer.167 This arrangement does, however, allow for “meter aggregation,” where a customer uses a single renewable energy generation system to offset the utility costs at several buildings, provided the customer owns each building and the buildings are located on the same or contiguous property.168 New Jersey net metering regulations also allow third-party power producers to participate.169

\begin{footnotesize}
\begin{enumerate}
\item 158 N.J. STAT. ANN. § 48:3-87(e)(1); New Jersey Incentives/Policies for Renewables & Efficiency, DATABASE OF STATE INCENTIVES FOR RENEWABLES & EFFICIENCY, http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NJ03R&re=0&ee=0 (last updated Oct. 10, 2014), archived at http://perma.cc/4NLE-XREA.
\item 159 N.J. ADMIN. CODE § 14:8-4.3(a).
\item 160 N.J. ADMIN. CODE § 48:3-87(e)(1).
\item 161 N.J. ADMIN. CODE § 14:8-4.3(c); Ferrey, Virtual “Nets” and Law, supra note 6, at 285.
\item 162 N.J. ADMIN. CODE § 14:8-4.3(e).
\item 163 N.J. ADMIN. CODE § 14:8-4.3(f) (2014). The utility is only required to offer the customer one opportunity to select when the billing period starts. Id.
\item 164 Id. § 14:8-4.3(m).
\item 165 See N.J. STAT. ANN. § 48:3-87(e)(4) (2012) (providing that only state entities may allocate net metering credits to multiple buildings or facilities); N.J. ADMIN. CODE § 14:8-4.1(b)(3) (stipulating that a renewable energy generation system may only serve a single net metering customer).
\item 166 N.J. ADMIN. CODE § 14:8-4.1(b)(i)–(ii).
\item 167 Id. § 14:8-4.1(b)(3).
\item 168 ARIZ. STATE UNIV. ENERGY POLICY INNOVATION COUNCIL, COMMUNITY, VIRTUAL AND AGGREGATE NET METERING, OH MY! 1 (2014), available at http://energypolicy.asu.edu/wp-content/}
\end{enumerate}
\end{footnotesize}
In 2012, New Jersey passed legislation requiring utilities to allow public entities to engage in aggregate net metering.170 The statute allows for state, county, and municipal entities, as well as school districts, to share credits amongst their facilities from a single generation system.171 To qualify for community net metering in New Jersey, the energy must come from solar technology.172 In order to participate, the buildings or facilities whose bills will be offset must be owned by the same public entity, and must be on property owned by that entity.173 The facilities need not be on the same or contiguous property, but are still subject to several geographic limitations.174 All county, state, or municipal buildings seeking to aggregate their meters must be located within the service territory of a single utility and must be served by the same basic generation provider.175 Furthermore, state entities in particular must be located within five miles of each other to aggregate their meters.176

Similar to private net metering customers, public entities are not required to limit the size of the solar generation system to a specific capacity.177 Public entities are, however, required to limit the size of their generation capacity to the combined annual energy usage of the facilities sharing the net metering credits.178 If the aggregating entity has excess credits at the end of the annual period, the utility will compensate the entity at the avoided cost rate.179

\textbf{D. Colorado Net Metering Policy}

Colorado originally enacted renewable energy standards in 2004 and has updated those policies several times in the past decade.180 The state’s net metering policies vary depending on the type of utility they apply to.181 The three

169 \textit{See N.J. ADMIN. CODE § 14:8-4.2 (2014) (defining a net metering customer as one who owns the meter, but who may or may not be the same entity as the owner of the generator).}
176 \textit{N.J. STAT. ANN. § 48:3-87(e)(4); New Jersey Incentives/Policies for Renewables & Efficiency, supra note 158.}
177 \textit{Id.}
174 \textit{Id.; N.J. ADMIN. CODE § 14:8-7.3(a).}
171 \textit{See N.J. ADMIN. CODE §§ 14:8-7.2–.3(b).}
178 \textit{Id. § 14:8-7.3(b)(1)–(2).}
173 \textit{Id. § 14:8-7.2 (2014).}
179 \textit{See id. § 14:8-7.3(a)(2) (lacking a specific capacity limit).}
170 \textit{Id.}
175 \textit{Id. § 14:8-7.3(f). Like private net metering customers, public entities participating in aggregate net metering receive credits on a month-to-month basis, at the retail rate. Id. § 14:8-7.3(d).}
180 \textit{COLO. CODE REGS. § 723-3:3651 (2014).}
181 \textit{Id. § 723-3:3650(a) to -3:3650(c).}
types of utilities included in the statute are investor-owned utilities ("IOUs"), municipal utilities, and cooperative utilities.182

All three types of utilities in Colorado offer net metering to customers who produce renewable energy and consume the energy on-site.183 The customer’s site may include buildings on contiguous property owned or leased by the customer.184 Colorado deems renewable energy resources to be solar, wind, geothermal, biomass, and hydroelectric energy.185

Customers in an IOU’s territory are required to limit the capacity of their generation system to no more than 120 percent of the customer’s average annual electricity usage.186 In contrast, customers served by a cooperative or municipal utility are subject to more specific limitations.187 Residential customers may only install generation systems up to ten kWs, whereas commercial and industrial customers are limited to up to twenty-five kW systems.188

Each type of utility compensates a customer’s monthly excess generation by crediting the customer at the retail rate on the next monthly bill.189 The utilities vary, however, in how they must settle a customer’s excess credits at the end of a given year.189 IOU customers can choose to be compensated at the avoided cost rate for unused credits at the end of the year, or, instead, make a one-time choice to have the credits roll over month-to-month indefinitely.191 Cooperative and municipal utilities are given discretion to compensate customers for annual excess generation in a manner the utility deems appropriate.192

182 Id. An IOU is a private business enterprise owned by shareholder investors. JIM LAZAR, REGULATORY ASSISTANCE PROJECT, ELECTRICITY REGULATION IN THE US: A GUIDE 9 (2011), available at http://www.raponline.org/document/download/id/645, archived at http://perma.cc/G4AC-DUBW. IOUs are the dominant electricity providers in the country, serving about seventy-percent of the U.S. population. Id. Municipally owned utilities are run by local city councils or elected commissions. Id. Cooperative utilities are private non-profit entities comprised of customers of the utility. Id. at 10. Cooperative utilities are typically found in rural areas and were predominantly created in the wake of the Great Depression to provide electricity to customers not served by IOUs. Id.

183 COLO. CODE REGS. § 723-3:3664(a)(1).

184 Id.

186 COLO. CODE REGS. § 723-3:3664(a)(1) (2014).

187 COLO. REV. STAT. § 40-9.5-118(e)(I)(A)–(B) (setting size limits for on-site generation systems in a cooperative utility’s territory); id. § 40-2-124(7)(b)(V)(A)–(B) (setting size limits for on-site generation systems in a municipally owned utility’s territory).

188 Id. §§ 40-9.5-118(e)(I)(A)–(B), 40-2-124(7)(b)(V)(A)–(B).

189 Id. §§ 40-9.5-118(b)(2)(a), 40-2-124(7)(b)(I); COLO. CODE REGS. § 723-3:3664(b).

190 COLO. REV. STAT. §§ 40-9.5-118(b), 40-2-124 (cooperatives, IOUs, and municipal specifications).

191 COLO. CODE REGS. § 723-3:3664(b). If a customer chooses not to receive year-end compensation but instead requests that the credits roll over month-to-month indefinitely, the customer will receive monthly credits until terminating service with the IOU. Id. Upon terminating service, the IOU claims the excess credits at no charge. Id.

192 COLO. REV. STAT. §§ 40-9.5-118(b), 40-2-124 (2014).
In 2010, in an effort to encourage broader use of solar energy, the Colorado legislature authorized the creation of community solar gardens ("CSGs"), a form of community net metering.193 A CSG is a solar array shared by subscribers who pay to own a subscription in the CSG.194 In return, subscribers receive credits to offset their monthly utility bill in proportion to their paid interest in the CSG.195 CSG subscriptions are only available to residential, commercial, and industrial customers served by IOUs.196 A minimum of ten subscribers must participate in a CSG for one to function.197

Subscribers to a CSG need only live within the same municipality or county as the solar array; there is no requirement that the solar generation facility be on the same or contiguous property as the consumer.198 Further, third parties are permitted to own and operate CSGs.199 Similar to on-site net metering customers in Colorado, CSG subscribers receive a credit on their next monthly bill in the event the CSG produces more electricity than the subscribers used during the month.200 If a CSG produces excess electricity over the course of the year, the IOU is not required to compensate the CSG’s subscribers.201 Instead, the credits for each subscriber roll over month-to-month indefinitely.202

\section*{IV. OPTIMIZING NET METERING POLICIES}

Net metering is an important incentive for utility customers hoping to install on-site renewable energy generation systems.203 By helping energy consumers recover the large upfront costs associated with small-scale renewable energy generation systems, net metering policies have led to a striking growth

\begin{footnotesize}
\begin{enumerate}
\item[193] Id. § 40-2-127. One aim of community solar gardens is to offer renters and low-income customers the opportunity to participate in solar energy net metering. \textit{Id.}
\item[194] Id. § 40-2-127(2)(b)(II); Welcome, SOLAR GARDENS CMTY. POWER, http://www.solargardens.org/ (last visited Oct. 15, 2014), archived at http://perma.cc/4QE7-3F7V.
\item[196] See COLO. REV. STAT. § 40-2-127(7) (providing that the CSG program does not apply to cooperative or municipally-owned utilities).
\item[197] Id. § 40-2-127(2)(b)(I).
\item[198] COLO. REV. STAT. § 40-2-127(2)(b)(II) (2014). The geographical limits are relaxed if a subscriber lives in a rural area; a subscriber who lives in a county with a population of less than 20,000 can subscribe to a CSG in another county. \textit{Id.}
\item[199] Id. § 40-2-127(2)(b)(I). The IOU itself may be the owner of the CSG. \textit{Id.} The statute also allows subscribers to organize an ownership group amongst themselves. \textit{Id.}
\item[200] COLO. CODE REGS. § 723-3:3665(c)(III) (2014).
\item[201] Id.
\item[202] Id.
\item[202] Baker-Branstetter, \textit{supra} note 3, at 7.
\end{enumerate}
\end{footnotesize}
in the installation of such systems. In 2003, the Energy Information Administration (“EIA”) reported a total of approximately 7000 net metering customers in the United States. By 2010, the number of net metering customers had multiplied by more than twenty times, to over 150,000. These customers and their utilities are realizing the many recognized benefits of net metering and distributed renewable generation.

Despite the growing participation in net metering programs, net metering customers still comprise a small fraction of one percent of energy consumers in the United States. States can and should do more to promote and incentivize net metering, and they would do well to follow the examples set by Colorado, Massachusetts, and New Jersey. Each state is a leader among the net metering states, and yet, there are wide discrepancies in their policies. These discrepancies exemplify how legislatures can tailor net metering policies to promote specific state energy and environmental goals while also navigating federal law and Federal Energy Regulation Commission (FERC) guidelines.

A. Comparing Colorado, Massachusetts, and New Jersey Policies

1. Comparing Size Limits, Credit Systems, and Customer Choice

How a state limits the size of electricity generation systems eligible for net metering is important because it affects how much of a customer’s electricity need can be met with on-site generation and how quickly a customer will realize a return on investment. Due to the upfront costs of installing a renewable generation system on a customer’s property, smaller systems are more expensive than larger systems, on a per-watt basis. Therefore, state policies

205 Id.
206 Id.
207 See Baker-Branstetter, supra note 3, at 8 (listing the primary benefits of distributed renewable generation, including lower electric bills, decreased transmission and distribution costs, and decreased greenhouse gas emissions); Today in Energy, supra note 204 (listing benefits to utilities, including decreased costs of transmission and distribution infrastructure investment).
208 Today in Energy, supra note 204. As of 2010, net metering customers represented only one-tenth of a percent of all energy customers in the United States. Id.
209 See Ferrey, Virtual “Nets” and Law, supra note 6, at 268, 292 (showing that some states have no net metering statutes and among states that do, fewer than half allow for community net metering).
211 See infra notes 269–85 and accompanying text.
212 See BIRD ET AL., supra note 6, at 13 (showing that the smaller the system, the slower the return on investment).
213 Id.
that allow customers to scale systems to meet their needs provide the best incentive for net metering.\footnote{See id.; Powers, supra note 28, at 662.}

Colorado, Massachusetts, and New Jersey have each amended their net metering statutes to expand the allowable size of renewable energy generation systems.\footnote{Colorado Incentives/Policies for Renewables & Efficiency, DATABASE OF STATE INCENTIVES FOR RENEWABLES & EFFICIENCY, http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CO26R&re=0&ee=0d (last updated Aug. 20, 2014), archived at http://perma.cc/U55J-TTMR; Massachusetts Incentives/Policies for Renewables & Efficiency, supra note 139; New Jersey Incentives/Policies for Renewables & Efficiency, supra note 158.} For example, Massachusetts has set specific kilowatt (kW) or megawatt (MW) capacities based on the class of customer.\footnote{220 MASS. CODE REGS. 18.04 (2014).} Colorado and New Jersey, meanwhile, have shifted the metric of allowable size from a specific MW capacity to a capacity based on the customer’s average electricity consumption.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).} This approach better incentivizes new net metering customers because it gives them the flexibility to meet their energy needs regardless of the size of the building or facility.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).}

The way in which net metering customers are credited for their excess generation by the utility is another key policy component of any state policy, because it directly affects a customer’s energy bill savings.\footnote{See Powers, supra note 28, at 661; Steven Ferrey, Fire and Ice: World Renewable Energy and Carbon Control Mechanisms Confront Constitutional Barriers, 20 DUKE ENVTL. L. & POL’Y F. 125, 186–87 (2010) [hereinafter Ferrey, Fire and Ice].} Customers who receive credit for the power they generate on-site at the full retail rate earn approximately four times the wholesale value of the electricity.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).} Thus, giving customers the retail rate represents a straightforward financial incentive to install a renewable energy generation system on-site.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).}

Massachusetts credits Class I and II facilities (facilities anywhere from zero to one MW in size) at roughly the retail rate for excess electricity in a given month.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).} Colorado and New Jersey both incentivize net metering by crediting monthly excess generation at the full retail value.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).} In New Jersey, excess credits at the end of the year are purchased by the utility at the avoided cost rate.\footnote{See COLO. CODE REGS. § 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).} In contrast, Colorado and Massachusetts allow customers to roll over
customers’ credits expire and revert in value from the retail rate to the avoided cost rate. To provide the best incentives to consumers, states should design policies like Colorado’s and Massachusetts’ regarding credit payments, as they give customers the largest possible value for their generation.*

Due to the variety of customer energy consumption patterns, states should also craft policies that give customers flexibility to meet their unique energy needs. Allowing customers to scale their on-site generation systems based on average energy consumption is one example of customer flexibility adopted by Colorado and New Jersey.* Another example is New Jersey’s policy of allowing customers to choose when their annual billing cycle begins. Yet another is that Colorado gives customers the choice to have credits roll over indefinitely or to receive a year-end payment for excess credits. Because of the flexibility provided to customers by these policies, there are expanded opportunities to take advantage of the benefits of net metering.

2. Community and Virtual Net Metering

Community net metering policies are valuable incentives because they include customers who may otherwise be unable to reap the benefits of renewable power generation.* States that allow for community net metering facilitate broader participation in renewable generation, particularly among customers whose property is not suitable for a small-scale installation or for those to whom the upfront costs of renewable generation are too high.*

*COLO. CODE REGS. § 723-3:3664(b) (2014); 220 MASS. CODE REGS. 18.04(5).

Compare N.J. ADMIN. CODE § 14:8-4.3(e) (requiring utilities to compensate a customer-generator’s annual excess generation at the avoided cost rate), with COLO. CODE REGS. § 723-3:3664(b) (providing customers the choice to request that credits be rolled over month-to-month indefinitely), and 220 MASS. CODE REGS. 18.04(5) (requiring the distribution company to roll over excess credits from billing period to billing period).

Colorado and Massachusetts both permit net metering so that credits created by a renewable energy system may be allocated to meters of multiple customers, even those not physically on or next to the property of the generator. New Jersey, alternatively, only allows public entities to share credits from a single renewable energy system. New Jersey’s policy helps government agencies reduce their energy costs by allocating credits across multiple buildings but, unlike the policies of Colorado and Massachusetts, it is not inclusive of private energy consumers, and in particular, of low-income and renting customers.

States should aim to include all customers who would like to benefit from distributed renewable energy generation, not merely those customers who can afford the upfront costs of installation. Community net metering policies such as Colorado’s expand access to distributed renewable energy by providing customers the opportunity to benefit from net metering without bearing the entire cost of a distributed renewable energy installation. Furthermore, community and virtual net metering programs improve access to the benefits of distributed renewable energy by streamlining the process of connecting a distributed generation system to the grid. The owner of a distributed renewable energy system may have to engage in complex negotiations with the utility in order to interconnect to the grid—a process that can effectively be a barrier to installing a renewable energy system. This barrier is decreased however, in community and virtual net metering programs in which a single connection to the grid can benefit many customers.

237 Compare COLO. REV. STAT. § 40-2-127(2)(b)(II) (allowing private customers to subscribe to a community solar garden), and 220 MASS. CODE REGS. 18.05 (allowing a private customer with an on-site generation system to designate credits to other customers), with N.J. ADMIN. CODE § 14:8-7.2–3 (limiting the customers eligible to aggregate net metering credits to public entities). Notably, the Colorado legislature expressly declares in its community solar garden legislation that “[i]t is in the public interest that broader participation in solar electric generation by Colorado residents and commercial entities be encouraged by the development and deployment of distributed solar electric generating facilities known as community solar gardens, in order to . . . allow renters, low-income utility customers, and agricultural producers to own interest in solar generation facilities.” COLO. REV. STAT. § 40-2-127(1).
238 See Goodward, supra note 233, at 2 (explaining the benefits of community net metering).
239 See COLO. REV. STAT. § 40-2-127; Powers, supra note 28, at 639.
240 See 220 MASS. CODE REGS. 18.05(1) (requiring a host customer to provide the utility with a written list of customers to whom credits will be designated); Powers, supra note 28, at 640.
241 See Powers, supra note 28, at 640.
B. Addressing the Inadequacies of the FERC Decisions

1. MidAmerican and Sun Edison: Limited Guideposts

The FERC decisions MidAmerican Energy Company and Sun Edison, LLC were adjudications to resolve the specific issues raised by the particular facts of each case. In neither decision did FERC contemplate the many policy variations employed by different states. Nonetheless, these decisions comprise the primary framework within which states shape their net metering policies. States attempt to heed the orders despite the limited scope of the decisions, and thus leave their respective policies on tenuous legal footing.

An example of a limitation of the FERC decisions is the time interval that constitutes a billing cycle. The length of the billing cycle is crucial to net metering policies because FERC has made clear that federal law applies when a customer makes a net sale of electricity to the utility at the end of the billing cycle. Before MidAmerican, FERC had found that net metering was appropriate over a one-hour period but that other reasonable billing periods could be permitted. In MidAmerican, FERC determined—based on the particular facts of that case—that net metering is allowed over a one-month billing cycle. Thus, states looking to FERC for guidance after MidAmerican know that a net metering customer who sends excess electricity to the utility is not subject to federal jurisdiction as long as the excess electricity is measured between one hour and one month of time.

States have followed the finding in MidAmerican that one month is an appropriate interval to allow customers to send excess electricity to the utility. At the same time, without guidance from FERC, most states have adopted one year as the cutoff, after which time accumulated credits are reconciled: either taken over by the utility or bought from the customer at the avoided cost.

244 See Ferrey, Virtual “Nets” and Law, supra note 6, at 305, 309.
245 See id. at 317, 321.
246 See COLO. REV. STAT. § 40-2-124(1)(a)(VIII) (limiting on-site generation capacity to 120 percent of the customer’s average annual consumption); N.J. ADMIN. CODE § 14:8-4.3(a) (2014) (requiring that customers generating electricity on-site avoid producing more power than they need); Ferrey, Virtual “Nets” and Law, supra note 6, at 321.
247 See MidAmerican, 94 FERC ¶ 62264.
248 See Sun Edison, 129 FERC ¶ 61621 (finding that when there is no net sale of electricity from the customer to the utility over the applicable billing period, FERC jurisdiction is not invoked).
249 MidAmerican, 94 FERC ¶ 62263.
250 Id. ¶ 62264.
251 See id. In the Sun Edison decision eight years later, FERC acknowledged the finding in MidAmerican that one month was an appropriate time interval but did not address the issue further. See Sun Edison, 129 FERC ¶ 61620 n.10.
By requiring net metering customers to start over every year, states are essentially lowering the value of customer-generated electricity from the retail rate to the avoided cost rate. The value of the electricity is diminished even further in states where the customer’s accumulated electricity is simply forfeited to the utility at the end of the annual period. Because the rate at which net metering customers are credited for their electricity is a key incentive, the efficacy of net metering policies is burdened by states’ uncertain efforts to comply with the MidAmerican decision.

Some states, such as Colorado and Massachusetts, allow accumulated credits to roll over month-to-month indefinitely. This policy is a win-win: net metering customers in these states receive the optimal payback (the retail rate) and the states comply with FERC’s finding in MidAmerican that one month is a permissible interval for customers to send excess electricity to utilities. States like Colorado and Massachusetts have thus followed the limited guidance of FERC while also providing potential net metering customers with an attractive incentive to invest in small-scale renewable energy.

The appropriate size and capacity of on-site renewable energy systems is another example of the inadequacy of FERC’s net metering decisions. After Sun Edison, state policymakers seeking to avoid federal preemption know only that the net flow of power must be from the utility to the customer. States have cautiously phrased their net metering rules to account for this finding. New Jersey and Colorado’s regulations exemplify this caution by limiting the size of eligible renewable energy systems to only meet the needs of the customer. Although New Jersey and Colorado’s size limits are based on a per-

253 See Ferrey, Virtual “Nets” and Law, supra note 6, at 280–88. By paying customers the avoided cost rate at the end of a twelve-month period, utilities are complying with the Public Utility Regulatory Policies Act, which requires utilities to purchase Qualifying Facilities’ (“QF”) power at the avoided cost rate. See Federal Power Act, 16 U.S.C. § 824a-3(b) (2012).

254 See Ferrey, Sale of Electricity, supra note 45, at 232 (showing that the retail rate of electricity can be up to four times more than the avoided cost rate).

255 See VT. STAT. ANN. tit. 30, § 219(e)(3)(C) (2014) (providing that any credits not used within twelve months shall revert to the electric company without any compensation to the customer); WASH. REV. CODE § 80.60.030(5) (2014) (requiring that on the thirtieth day in April of each year, unused credits be forfeited to the utility with no compensation to the customer).

256 See Baker-Branstetter, supra note 3, at 28 (arguing that granting credits to utilities without compensation discriminates against customer-generators); Powers, supra note 28, at 634 (arguing that net metering policies should include better financial incentives for homeowners who want to install on-site generation).

258 See 94 FERC ¶ 62264.

259 See see COLO. REV. STAT. § 40-2-124(1)(c)(I)(B) (2014); 220 MASS. CODE REGS. 18.05(3); MidAmerican, 94 FERC ¶ 62264.

260 See Sun Edison, 129 FERC ¶ 61621.

261 See id.

263 See COLO. CODE REGS. 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a).
centage of the customer’s annual energy needs and thus are more flexible than permitting only a fixed output of electricity, these limits nonetheless restrict the potential of distributed generation.264

Increasing the allowable size of net metering could spur larger investment and development in renewable energy.265 For example, a commercial or industrial building owner may have the capacity to install enough renewable energy to produce 200 percent of the building’s needs.266 Instead, state policies discourage that level of excess generation in order to avoid FERC jurisdiction.267 To foster development of distributed renewable energy sources, state net metering policies should be able to permit larger generation capacity without fear of federal preemption.268

2. States as Policy Laboratories

Community and virtual net metering policies such as those employed by Colorado and Massachusetts are indicative of the kind of state-level creativity that can be used to expand the use of renewable energy.269 States have implemented virtual and community net metering policies to broaden access to the benefits of net metering, but also to maintain compliance with the FERC decisions.270 Under Massachusetts’ virtual net metering program, for example, a host customer who generates excess electricity may allocate those credits to another customer rather than forfeit the power to the utility.271 In this virtual net metering scenario, multiple customers receive roughly the retail value for the electricity, rather than the host customer forfeiting the excess electricity or receiving only the avoided cost value at the end of the year.272 Absent this creative policy, electricity left over at the end of the year could only be bought at

264 See COLO. CODE REGS. 723-3:3664(a)(I); N.J. ADMIN. CODE § 14:8-4.3(a). Distributed generation’s potential for growth has been noticed by financial firms, such as the investment-research firm Morningstar, which predicts distributed generation could comprise one-third of energy capacity in the United States by 2017. Distributed Generation: Devolving Power, ECONOMIST, Mar. 8, 2014, at 69, 69–70.

265 See Powers, supra note 28, at 634, 662 (arguing that current net metering policies provide inadequate incentives for homeowners and should be expanded to permit larger generation systems).

266 See id. at 639–40.

267 See Ferrey, Virtual “Nets” and Law, supra note 6, at 321.

268 See id.

269 See Goodward, supra note 233, at 1.

270 See COLO. REV. STAT. § 40-2-127(1) (2014) (declaring it in the public interest to broaden participation in solar energy generation); Ferrey, Virtual “Nets” and Law, supra note 6, at 321.

271 See 220 MASS. CODE REGS. 18.05(1) (2014).

272 Compare 220 MASS. CODE REGS. 18.04–05 (calculating net metering credits at roughly the retail rate and allowing host customers to allocate credits to other customers), with N.J. ADMIN. CODE §§ 14:8-4.1(b)(3), 14:8-4.3(e) (2014) (stipulating that a renewable energy generation system may only serve a single net metering customer and providing that credits remaining after a twelve-month period will be compensated at the avoided cost rate).
the avoided cost rate in order to comply with federal law and the FERC decisions.273

States can better foster renewable energy development if larger generation capacities are permitted.274 After the MidAmerican and Sun Edison decisions, customers are discouraged from investing in larger capacity on-site generators because doing so increases the likelihood that they will be net producers of electricity and thus face onerous federal regulation.275 FERC regulations, however, specifically exempt small-scale qualifying facilities (“QFs”) that generate fewer than twenty MW from federal scrutiny of wholesale sales.276 FERC could thus operate within its existing regulations by permitting an on-site generation facility up to twenty MW to be a net seller of electricity, regardless of the facility’s consumption-to-sale ratio.277 Lifting the requirement that net metering customers be net consumers of electricity would free states to craft policies that allow customers to install larger generation systems that add more renewable power to the grid.278

States’ efforts to comply with FERC’s decisions in MidAmerican and Sun Edison have limited the potential of net metering policies.279 Nonetheless, states are well situated to implement new net metering policies to attract investment in renewable energy.280 States should thus be encouraged to be policy laboratories in order to continue developing inclusive programs like virtual and community net metering.281

Net metering is a popular policy incentive for renewable energy, and importantly, it is one that is successful.282 In order to foster the proliferation of net metering in the various states, net metering policies require a more solid

273 See Ferrey, Virtual “Nets” and Law, supra note 6, at 320. One commentator has referred to virtual net metering as a potential “legal safe harbor” from the Federal Power Act and filed rate doctrine. Id. at 321.
274 See Powers, supra note 28, at 662.
275 See MidAmerican, 94 FERC ¶ 62263 (finding that federal law applies when there is a net sale from a customer to a utility); Sun Edison, 129 FERC ¶ 61621; Baker-Branstetter, supra note 3, at 24.
276 See 18 C.F.R. § 292.601(c)(1) (2013) (exempting QFs from scrutiny under Sections 205 and 206 of the Federal Power Act if the QFs have a capacity of fewer than twenty MW).
277 See id.
278 See Powers, supra note 28, at 640 (arguing that current state policies limiting the size of eligible facilities discourages the spread of distributed generation).
279 See id. at 640–41. One commentator argues that net metering policies in their current form can only have a limited impact on the development of distributed generation. Id.
280 See Baker-Branstetter, supra note 3, at 26. One reason the states are taking the lead in renewable energy policy is the lack of federal legislation in this area. Ferrey, Virtual “Nets” and Law, supra note 6, at 317.
281 See COLO. REV. STAT. § 40-2-127 (2014) (allowing for community net metering); 220 MASS. CODE REGS. 18.05(1) (2014) (allowing for a host customer to designate credits to another, physically unconnected customer).
legal foundation than a FERC adjudication.283 The Energy Policy Act of 2005 improved the policy landscape, but it did not do enough, and thus states have continued to be the drivers of net metering policies, and have crafted creative programs without federal legal clarity.284 FERC can rectify this situation, and in so doing, allow states to continue in their roles as net metering policy laboratories that foster the growth of distributed renewable generation, by providing more clear and transparent federal guidelines for net metering policies.285

CONCLUSION

Generating electricity from renewable sources distributed throughout the power grid, or distributed generation, has environmental, financial, and reliability benefits. The primary policy tool used to incentivize distributed generation is net metering, a billing device that allows customers who produce their own power to offset their electricity bills with the electricity they generate. Forty-three states currently have net metering policies, and most states have crafted their policies with available incentives that vary greatly from one state to another. As states like Colorado, Massachusetts, and New Jersey have attempted to forge policies that provide the best incentives for distributed renewable energy development however, they are at risk of significant federal preemption issues that not only burden those states’ continuing efforts, but shroud their current policies in damaging uncertainty.

Although the Federal Energy Regulatory Commission (FERC) has expressly allowed net metering, it did so in two adjudications that have very limited precedential value. FERC is thus limiting the potential of net metering policies by restricting key components such as the permissible size of a customer’s generation system and the amount of compensation available. Because of the importance of net metering specifically, and environmentally safe, renewable energy more generally, FERC should recognize the important policy work being done at the state level and promote distributed generation by providing clearer net metering policy guidelines for the states to rely on.

283 See Sun Edison, 129 FERC ¶ 61621; Ferrey, Virtual “Nets” and Law, supra note 6, at 268 (showing that net metering is the most common state policy incentive for renewable power).
284 See SOLAR ELEC. POWER ASS’N, supra note 4, at 1; Baker-Branstetter, supra note 3, at 26.
285 See Baker-Branstetter, supra note 3, at 26 (arguing states are taking the lead and making strides in net metering policies); Powers, supra note 28, at 641 (finding that net metering policies in some states have had a significant impact on distributed generation, but could be improved with greater incentives).